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Monadic and HigheR-ORdeR StRuctuRe
Nathanael Amariah Arkor

Abstract
Simple type theories, ubiquitous in the study of programming language theory, augment algebraic theories
with higher-order, variable-binding structure. This motivates the definition of higher-order algebraic theories
to capture this structure, permitting the study of simple type theories in a categorical setting analogous to that
of algebraic theories. The theory of higher-order algebraic theories is in one sense much richer than that of
algebraic theories, as wemay stratify the former according to their order: for instance, the first-order algebraic
theories are precisely the classical algebraic theories, the second-order algebraic theories permit operators to
abstract over operators, the third-order algebraic theories permit operators to abstract over operators that
themselves abstract over operators, and so on. We study the structure of the category of (n + 1)th-order
algebraic theories, demonstrating that it may be viewed as a construction on the category ofnth-order algebraic
theories, facilitating an inductive construction of the category of higher-order algebraic theories. In turn, this
description leads naturally to a monad–theory correspondence for higher-order algebraic theories, subsuming
the classical monad–theory correspondence, and providing a new, monadic understanding of higher-order
structure.

In proving the monad–theory correspondence for higher-order algebraic theories, we are led to recon-
sider the traditional perspective on the classical monad–theory correspondence. In doing so, we reveal a
new understanding of the relationship between algebraic theories and monads that clarifies the nature of the
correspondence. The crucial insight follows from the consideration of relative monads, which are shown to
act as an intermediary in the correspondence. To support our proposal that this be viewed as the correct
perspective of the monad–theory correspondence, we show how the same proof may be carried out in a for-
mal 2-categorical setting. The classical monad–theory correspondence, as well as those in the literature for
enriched and internal categories, then follow as corollaries of a general theory.
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Chapter 1

Introduction

This thesis is a study of two questions, whichmay at first seem tangentially related. To begin, we shall therefore
start with the context, and explain the process by which one might come to be interested in these questions.

Algebra may be viewed broadly as the study of structure. Universal algebra considers very simple struc-
tures: objects equipped with finitary operators, subject to universally-quantified axioms. By this, we mean we
fix a collection S of objects (which are traditionally called sorts or types), and specify operators between them:
formally, pairs ((A1, . . . , An), B), denotedA1, . . . , An → B, which we understand conceptually to represent
some transformation from terms a1, . . . , an having sorts A1, . . . , An, to a term having sort B, where terms
are build inductively from variables and the constants and operators of the algebra. Here “object” and “trans-
formation” are intended entirely abstractly: it is not important to give them a precise meaning. For instance,
addition +: N,N → N and multiplication of natural numbers × : N,N → N are binary operators on natural
numbers. The natural numbers themselves are the terms having sort (or type)N, and are built inductively from
the constant 0 and the successor operator: in other words, every natural number is defined by a finite sum
(· · · (0+1)+ · · · )+1. It is not necessary for the sorts of an operator to be homogeneous: for example, ifN⋆ is
a sort representing lists of natural numbers, then the length of a list |−| : N⋆ → N is a unary operator whose
input sort (called the arity) is distinct from its output (called the coarity). A universally-quantified axiom is a
rule that imposes a constraint on the properties of the operators. For instance, addition of natural numbers
satisfies the associativity law, which says that for all natural numbers `,m, n, the following equality holds:

(`+m) + n = `+ (m+ n)

It is universally-quantified because the law holds for all natural numbers.
Although universal algebra is simple, it is powerful, and a great many structures of interest may be ex-

pressed in the language of universal algebra. However, there are also various structures of interest, particularly
within computer science, that cannot be.

Algebraic simple type theory is a generalisation of universal algebra in two orthogonal directions. The first
is through the introduction of type operators, which permit the description of structure on sorts, rather than
structure on terms. For instance, the process of taking a sort A and producing the sort A⋆ of lists of A is a
unary type operator. The second generalisation is through the introduction of binding operators. A binding
operator is one that involves a term that quantifies over a variable in some way. For instance, the differential
operator ∂x.f(x) takes a single input f , the function to differentiate, which is parameterised by x, the variable
with respect to which f is differentiated. Algebraic simple type theories are prevalent in theoretical computer
science, since they can be used to represent and study simple programming languages.

Universal algebra is a relatively old field, dating back to the 1930s [Bir35], and there are now many tools
and techniques with which to study universal algebraic structures. Algebraic simple type theory is much
more recent: though examples of simple type theories date back to the 1940s [Chu40], there have until very
recently been no satisfying formalisms by which to study them, and the definition we employ1 was given
only in 2020 [AF20] (cf. [Fio17a]), though the augmentation of universal algebra with binding operators was

1



Chapter 1. Introduction

described some time earlier [CP07; FH10]). Consequently, compared to universal algebra, we have far fewer
techniques for studying algebraic simple type theories. Given their prevalence in computer science, there
is strong motivation to develop tools by which we might prove theorems about classes of simple type the-
ories, facilitating the elimination of the repetitive proofs that are, at present, commonplace in the study of
programming languages. This is essentially the high-level starting point for this thesis.

One particularly valuable tool in the study of universal algebra is category theory. There exist two distinct,
but strongly related, approaches to categorical universal algebra: the first is through the study of algebraic
theories, and the second is through monads. We shall defer the definition of both, so as not to drive away
the reader unfamiliar with category theory. It suffices to note that both approaches are useful for reasoning
about universal algebraic structures, and have distinct strengths and weaknesses. Given the power of both
approaches, we might wonder whether similar (but appropriately generalised) approaches exist for algebraic
simple type theory. Recall that simple type theories generalise universal algebras in two directions: through
type constructors, and through binding operators. Rather than attempt to formulate both generalisations at
once in the languages of algebraic theories and of monads, it is simpler to attempt to generalise in each of
the two directions separately, and then afterwards to combine them. In fact, the generalisation of algebraic
theories to the setting of binding operators has already been initiated by Fiore and Mahmoud [FM10], who in-
troduced a notion of second-order algebraic theory. A natural starting point for such an investigation, therefore,
is to determine whether there is an analogous generalisation of monad.

While algebraic theories and monads were developed independently, Linton later established the two con-
cepts to be equivalent [Lin66b]: we refer to this relationship as the classical monad–theory correspondence. If
there were a generalisation of monads to binding universal algebra, we would therefore hope for them to be
equivalent to second-order algebraic theories. Our first motivating question may thus be phrased as follows.

Question 1. Is there a monad–theory correspondence for second-order algebraic theories?

To attempt to develop a monad–theory correspondence for second-order algebraic theories, it seems pru-
dent to study the precise relationship between algebraic theories andmonads – for instance, how to associate a
monad to an algebraic theory, and vice versa – with the hope of then modifying the relationship appropriately.
In this way, we would hope to formulate a notion of “second-order monad” that corresponds to second-order
algebraic theories, essentially by definition. At first, such a task seems straightforward: for one thing, it is
relatively straightforward to give a concrete proof of the classical correspondence; and for another, there have
been many, more abstract, reformulations of the correspondence in the years since, which one would expect
to give a more abstract, conceptual understanding, aiding the formulation of the appropriate generalisation for
second-order algebraic theories. However, in the first case, it is not always the case that being able to prove a
theorem is enough to ensure that one understands it: this is particularly keenly felt in the case of the classical
monad–theory correspondence. In the second case, perhaps surprisingly, the subsequent generalisations of
the correspondence seemmoremysterious still, establishingmonad–theory correspondences in a wide variety
of settings, and yet employing definitions that are often unmotivated by the authors. This makes finding the
appropriate setting in which to frame second-order algebraic theories a difficult task indeed, as they do not
obviously fit into any of the available frameworks. Thus, to answer our first question, we are motivated to
first answer another.

Question 2. Why is there a correspondence between algebraic theories and monads?

By this, we emphasise that it is not enough simply to find a proof: plenty exist already in the literature.
Instead, we wish to find a conceptual explanation for its existence, to the extent that the monad–theory cor-
respondence should appear inevitable – a trivial consequence of the axioms of algebraic theory and monad.
While such a deep understandingmay seem inessential to answer our first question, in practice it will transpire
to be invaluable.

1We should note that the definition of algebraic simple type theory to which we refer was introduced by the author together with
Marcelo Fiore [AF20], and so there is naturally some bias in what we view here as the appropriate formalism for simple type theories.
However, given that we have not found other attempts to give a precise definition of simple type theory (that captures at least the
motivating example of simply-typed λ-calculus); the naturality of our definition; and the strength of our examples, we believe that our
choice is well justified.
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Chapter 1. Introduction

To explain the process by which we may approach the second question, we shall need to be a little more
precise about the form of the classical monad–theory correspondence, for which the language of category
theory is unavoidable. We define an algebraic theory to be a finite-coproduct-preserving bijective-on-objects
functor from the free category with strict finite coproducts on a single object; a morphism of algebraic theories
is a morphism of coslices. We define a finitary monad on Set to be a monad on Set that preserves sifted
colimits2; a morphism of finitary monads on Set is simply a monad morphism. Since Set is freely generated
under sifted colimits from finite sets, a finitary monad on Set in some sense carries redundant information,
because the action of the monad on the sifted colimits is entirely determined by the action on finite sets.
Tellingly, the finite sets too are freely generated, this time under finite coproducts of the singleton set. We
therefore see the same structure appearing (up to equivalence) in the definitions both of algebraic theory, and
of finitary monad: namely, the category freely generated under finite coproducts of a single object.

Since a finitary monad on Set is determined by its action on the finite sets, we might look for a notion that
captures this structure: that is, a monadwhose action is determined by a subcategory of its codomain. In doing
so, we are led inevitably to relative monads [ACU10]. A monad relative to the inclusion of finite sets into all
sets is equivalent to a finitary monad on Set. To recover the monad–theory correspondence then, it suffices
to relate algebraic theories and relative monads. The relationship is established in two steps: the first by a
characterisation of Kleisli inclusions for relative monads in terms of bijective-on-objects left- relative adjoint
functors, and the second by a (relative) adjoint functor theorem, relating adjointness and colimit-preservation
properties. This leads to a new and remarkably simple proof of the monad–theory correspondence. Further-
more, this proof is highly amenable to generalisation: in fact, we can recover the majority of monad–theory
correspondences in the literature using the same techniques. Chapter 3 is dedicated to the exposition and
proof of the monad–theory correspondence from this perspective.

With the results of Chapter 3, it is possible to return to our first question and, while a correspondence with
monads for second-order algebraic theories is not immediate, it is now tractable. However, it is first necessary
to understand the structure of Law3, the category of algebraic theories. In particular, just as the category
of sets is generated by sifted colimits of finite sets, we desire a similar characterisation of Law: while finite
sets act as the arities of operators in universal algebra, finite algebraic theories act as the arities of binding
operators, and so we expect the category of finite algebraic theories to play the same role that the category
of finite sets did for the classical monad–theory correspondence. Though Law is known folklorically to be
locally strongly finitely presentable, meaning that it is generated under sifted colimits in this way, a concrete
description of the category of finite algebraic theories is absent. In Chapter 4, we give a new proof of this
property that makes the subcategory of finite objects explicit, in doing so providing a new universal property
of the category of algebraic theories.

Local strong finite presentability paves the way for a monad–theory correspondence, which we subse-
quently obtain: our general monad–theory correspondence makes this relatively straightforward. However,
the correspondence uncovers a new mystery. To elaborate, we must first recall the notions of models for an
algebraic theory, and the algebras for a monad. An algebraic theory is an abstract specification of an algebraic
structure, such as a magma: a structure with a single binary operator. A model for the algebraic theory of
magmas is a specific instance of such a structure, for instance the natural numbers equipped with addition, or
the truth values equipped with disjunction. Similarly, a monad is an abstract specification, while an algebra
for a monad is a specific instance of that specified structure. The classical monad–theory correspondence ac-
tually relates more than just algebraic theories and monads: it states that the models for an algebraic theory
coincide with the algebras for the corresponding monad, and vice versa. We might therefore hope that the
same holds for second-order algebraic theories. However, there is a subtlety. Models of algebraic theories are
by definition certain structure-preserving functors (in this case, the structure being finite coproduct structure).
However, the algebras for a monad corresponding to a second-order algebraic theory correspond to functors
that do not preserve all relevant structure. They therefore appear weaker than the appropriate definition of
model for a second-order algebraic theory. In the final section of Chapter 4, we explain this disparity, and
shed light on the meaning of algebra and model in categorical logic.

2Sifted colimits are those that commute with finite products in Set.
3Named so after Lawvere, who introduced algebraic theories [Law63].
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Chapter 1. Introduction

One might wonder, since there is a good theory of (first-order) algebraic theories and second-order alge-
braic theories, whether there might be a coherent story for third-order algebraic theories, however they might
be defined. This is a little more difficult to justify from the perspective of algebraic type theory than second-
order algebraic theories, since third-order operators are operators that quantify over metavariables: variables
which themselves may quantify over variables. Such operators are uncommon in type theory, but do make an
appearance in programming languages with control operators [Gri89], like continuations. With this motiva-
tion in mind, it becomes pragmatic to generalise to nth-order algebraic theories for n ∈ N+ {ω}, and develop
a theory specialising to the known results when n ∈ {1, 2}. This is in fact the approach we take. This has an
unexpected benefit beyond mere generalisation: in particular, we show that the relationship between algebras
and models described earlier becomes particularly satisfying when n = ω.

At this point, it may appear that we have answered ourmotivating questions, andmaymove on to studying
the structure associated to type constructors in our investigation into algebraic simple type theories. However,
there is good reason not to be entirely satisfied with our answer to the second question. For one, there are
several monad–theory correspondences in the literature that are not captured by our generalisation in Chap-
ter 3. For us to truly claim to have understood the monad–theory correspondence, it stands to reason that we
should be able to recover all known monad–theory correspondences. For another, there are aspects of our
development that seem dissatisfyingly tied to the nature of categories, functors, and natural transformations.
To truly understand a categorical phenomenon, it is not enough to understand it solely from the perspective
of categories: we must instead move to the world of 2-categories, where the properties of categories, functors,
and natural transformations may be neatly axiomatised, forcing us to relinquish any reliance on the phenom-
ena that hold incidentally in the well-behaved setting of categories. A prime example of an aspect that remains
mysterious is the characterisation of Kleisli inclusions in terms of bijective-on-objects functors: it is not clear
what the appropriate generalisation of being bijective-on-objects should be in an arbitrary 2-category.

In the final chapters of this thesis, we therefore continue to investigate our second question. Here, our
motivations depart from our desire to develop the theory of algebraic simple type theories: we are motivated
purely by the pursuit of mathematical enlightenment. Our hope is to axiomatise those properties of a 2-
category that permit us to carry out monad–theory correspondences in such a way that recovers the classical
monad–theory correspondence, and its divers generalisations. Since the concept of relative monad is integral
to our understanding, we must first develop the theory of relative monads within a 2-category, following in
the footsteps of Street in the seminal study of monads within a 2-category [Str72b; Str72a]. This is the focus of
Chapter 5, where we define relative monads in a 2-category (technically, a proarrow equipment in the sense of
Wood [Woo82]) and study their Kleisli and Eilenberg–Moore constructions, as well as the process of rerooting
a relative monad: comparing relative monads relative to different 1-cells. In particular, the theory of this
chapter allows us to characterise when relative monads might be extended to monads with the same algebras,
which is crucial for the monad–theory correspondence. In the subsequent Chapter 6, we characterise Kleisli
inclusions for relative monads in the presence of a bicategorical factorisation system satisfying a property we
call resoluteness: such a factorisation system equips the 2-category with a formal theory of monads that is
very much like that of the 2-category of categories. The combination of these two chapters provides us with
the ingredients for a formal monad–theory correspondence, explicating at last the true nature of the classical
monad–theory correspondence.

In Chapter 7, the final chapter of this thesis, we justify our abstract analysis by recovering the monad–
theory correspondences of Lucyshyn-Wright [Luc16] and Bourke and Garner [BG19] for enriched categories,
and the monad–theory correspondence of Johnstone and Wraith [JW78] for internal categories, thereby sub-
suming every (1-dimensional) correspondence appearing in the literature. To do so, we show how the various
notions of theory appearing therein may be characterised by relative adjointness properties, which clarifies
several aspects of the previous developments.

To give context for our results, we also provide in Chapter 7 a survey of themonad–theory correspondences
that have appeared up to this point. The historical context proves particularly illuminating. For instance, it
reveals that our perspective on algebraic theories, as relative adjoint functors, was independently observed by
Diers [Die74], who also subsequently established a correspondence with a notion of relative monad [Die75].
Sadly, Diers’s work was entirely overlooked, and this perspective was lost until now. Fortunately for this
thesis, there is little overlap between our work and that of Diers’s beyond our definition of j-theory, partic-
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ularly as Diers works with a different, less general, definition of relative monad (which we relate to that of
Altenkirch, Chapman and Uustalu [ACU10] in Chapter 7). To the best of our knowledge, our survey is a com-
plete reference for the extant development of monad–theory correspondences since Linton [Lin66c]; we view
the preservation of the mathematical record an important responsibility, and have taken care to present as
holistic a picture of this line of research as we were able.
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Chapter 2

Preliminaries

We briefly review the notation and terminology we use throughout the thesis.

2.1 Conventions
We shall use f ;g for diagrammatic composition order, and juxtaposition gf for traditional composition order,
unless stated otherwise.

2.2 1-categories
Definition 2.2.1. A shape is a small category. Given a class of shapes Φ, a category A is Φ-(co)complete
when every diagram of a shape in Φ in A has a (co)limit. A functor from a Φ-(co)complete category is Φ-
(co)continuous if it preserves (co)limits of shapes in Φ. We denote by [A,B]Φ the full subcategory of the
functor category [A,B] spanned by Φ-continuous1 functors.

Definition 2.2.2. For a category A, denote by PA the small-presheaf construction on A, i.e. the full subcate-
gory of [Aop, Set] spanned by small colimits of representables, and byよA : A→ PA the Yoneda embedding.
In the case that A admits Ψ-colimits, for Ψ a class of shapes, denote by PΨA the full subcategory of PA
spanned by Ψ-continuous presheaves (cf. [Kel82, §5.7]).

2.3 2-categories
For the definition of bicategory, we refer to [Bén67, Definition 1.1]. Every bicategory is biequivalent to a
2-category [MP85, §2], and so we shall generally work in the setting of 2-categories for simplicity. Similarly,
when drawing pasting diagrams in bicategories, we shall occasionally leave the structural isomorphisms im-
plicit for ease of comprehension.

Definition 2.3.1. We denote by CAT the 2-category of locally small categories, functors, and natural trans-
formations; and by Cat the locally full sub-2-category spanned by the small categories. We denote by Prof
the bicategory of small categories, profunctors, and natural transformations.

Definition 2.3.2. A bicategoryK is locally if, for all objectsX,Y ∈ K, the hom-categoryK[X,Y ] is .

Definition 2.3.3. A 1-cell f : A → B in a bicategory is representably fully faithful if, for all objects X ∈ K,
the functor K[X, f ] : K[X,A]→ K[X,B] induced by postcomposition by f is fully faithful.

1We shall not require notation for the full subcategory of the functor category [A,B] spanned by Φ-cocontinuous functors.
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Chapter 2. Preliminaries 2.3. 2-categories

Definition 2.3.4. A 1-cell u : B → E in a bicategory satisfies invertible-path lifting (resp. is a discrete isofi-
bration) if, for each span B b←− X

e−→ E and invertible 2-cell χ : b ; u ∼= e, there is a (unique) pair b′ : X → B
and χ′ : b′ ; u ∼= e such that χ = χ′ ; u.

X B

E

b

u
e

∼=
X B

E

u

b

e

b′

∼=

2.3.1 Extensions and lifts
Definition 2.3.5. A bicategory K is respectively left-coclosed, left-closed, right-coclosed, or right-closed if
equipped with each of the following operations2:

▷ : K[A,B]×K[A,C]op → K[B,C] Left extension
▶ : K[A,B]op ×K[A,C]→ K[B,C] Right extension
◁ : K[A,C]op ×K[B,C]→ K[A,B] Left lifting
◀ : K[A,C]×K[B,C]op → K[A,B] Right lifting

satisfying

K[A,B](f ◁ h, g) ∼= K[A,C](f, g ; h) ∼= K[B,C](g ▷ f, h)

K[A,B](g, f ◀ h) ∼= K[A,C](g ; h, f) ∼= K[B,C](h, g ▶ f)

natural in 1-cells f : A→ C , g : A→ B, h : B → C in K. A 2-category K is left-biclosed if it is left-coclosed
and left-closed, right-biclosed if it is right-coclosed and right-closed, coclosed if it is left- and right-coclosed,
closed if it is left- and right-closed, and biclosed if it is left- and right-biclosed.

We may present these operations diagrammatically as follows, where η denotes the unit of an adjunction,
and ε denotes the counit.

B B

A C A C

B B

A C A C

f

g g▷f g

f

g▶f

f

hf◁h

f

f◀h h
η ϵ

η ϵ

Note that a left extension inKco is a right extension; a left extension inKop is a left lifting; and a left extension
in Kco op is a right lifting. In practice, K may only have some extensions and lifts, in which case we use the
same notation, but treat the operators as partially-defined.

2We use the mnemonic symbols of May and Sigurdsson [MS06, Definition 16.3.1] for left extensions and lifts, rather than the common
notation lan and lift. In their setting everything is symmetric, so that left (co)closure coincides with right (co)closure, necessitating the
use only of two symbols; we choose to use the corresponding filled symbols for right extensions and lifts.

There is a helpful mnemonic to remember to which operation each symbol corresponds. Observe that, in each case, the operator
produces a 1-cell from the domain or codomain of the left operand to the domain or codomain of the right operand. The triangle points
in the direction of the domain or codomain: thereby, g ▷ f is a 1-cell from the codomain of g to the codomain of f , whereas f ◁ g is a
1-cell from the domain of f to the domain of g. For left versus right, we have that ▷ is empty, whilst ▶ is full, which is analogous to the
intuition that initial objects are often uninhabited and terminal objects are often inhabited (more whimsically, the shape ▷ is homotopic
to the shape 0, whilst the shape ▶ is homotopic to the shape 1).
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By convention, (−)▷ (−) will bind tightly on the left and on the right, so that f ; g▷h ; i ∼= f ; (g▷h) ; i.
One helpful intuition for these concepts is given by observing that, for a one-object 2-category viewed as

a monoidal category, extensions and lifts correspond to (co)closed structure, i.e. internal (co)homs.

Definition 2.3.6. Given 1-cells f : A → C and h : B → C , a left lift f ◁ h is absolute if it is preserved by
precomposition by any 1-cell, i.e. given any 1-cell a : X → A, we have that a ; (f ◁ h) ∼= (a ; f)◁ h.

B

X A C
f

h
f◁h

a

(a;f)◁h

η
∼=

Absolute right lifts and extensions are defined analogously.

We recall finally that it is possible to characterise right adjoints in a bicategory in terms of absolute left
extensions.

Lemma 2.3.7 ([SW78, Proposition 2]). Let ` a r be an adjunction in a bicategory K. Then r ∼= `▷ 1, and this
extension is absolute.
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Chapter 3

The classical monad–theory
correspondence

There are two traditional approaches to algebra in category theory: the first through algebraic theories, which
are often considered fundamentally syntactic, determining algebraic structures by their operations and equa-
tions (whilst remaining free from presentations); and the second through monads, which are often considered
fundamentally semantic, determining algebraic structures by the categories of varieties they present. Whilst
each has a distinct flavour, it has long been known that these two approaches are inseparable: the category
of infinitary algebraic theories is equivalent to the category of monads on Set, and the models for any given
algebraic theory are precisely the algebras for the induced monad [Lin66c; Lin66b; Lin69a].

Since one may consider monads on any category, it is natural to wonder whether this correspondence be-
tween theories and monads carries over to settings other than sets and, following this line of inquiry, the clas-
sical monad–theory correspondence has been generalised repeatedly since its inception (cf. [Lin69a; Dub70b;
Die75; BD80; Pow99; NP09; Mel10; LR11; BMW12; Luc16; BG19]). However, despite these divers approaches,
the monad–theory correspondence remains somewhat enigmatic. Establishing the most general correspon-
dences appears to require significant mathematical sophistication and, as such, it is not clear why one should
expect these correspondences to hold at all. In this chapter, we will give a new conceptual understanding
of the monad–theory correspondence, demonstrating that the correspondence is, in essence, an inevitable
consequence of the definitions of monad and theory.

To realise this desire, it is helpful to introduce an intermediate notion – that of a relative monad [ACU10] –
to bridge the gap between theories and monads. Intuitively, just as monads are monoids in categories of endo-
functors, relative monads are monoids in arbitrary functor categories. Many of the properties and construc-
tions of monads carry over to the relative setting. In particular, every relative monad is induced canonically
by two relative adjunctions [Ulm68; ACU10]: the Kleisli and Eilenberg–Moore resolutions. The central insight
of the perspective we present here, from which the entire monad–theory correspondence will be shown to
follow, is that theories correspond precisely to relative monads, in the following manner.

Idea. Algebraic theories are precisely the Kleisli inclusions of relative monads.

Having proven this characterisation, a result which makes use of little more than the Yoneda lemma and
an elementary observation regarding Kleisli categories, the path to a monad–theory correspondence is direct.
Since the Kleisli relative adjunction is initial amongst those inducing the given relative monad, such inclusions
are in one-to-one correspondence with relative monads themselves, establishing an equivalence between the
category of theories and the category of relative monads. Furthermore, in well-behaved situations, relative
monads are equivalently given by monads preserving certain colimits, and from this the monad–theory cor-
respondence may be concluded.

From the perspective of relative monads, many of the definitions and constructions that have arisen in the
study of theories, such as the definition of the categories ofmodels in terms of a pullback [Lin69a; Die74; Mel10;
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LR11; BG19], and the nervousness conditions associated to theories and monads [BG19], are also illuminated.
For simplicity, in this section we work in the setting of unenriched categories. The reader versed in en-

riched category theory will observe that the proofs carry over with essentially no modification to the setting
of enriched categories. We will later recover an enriched monad–theory correspondence through a general
2-categorical framework in Chapters 5 to 7.

3.1 The relative monad–theory correspondence
Webegin by introducing the notion of relative monad, which generalises the notion of monad from a structured
endofunctor to an arbitrary functor with structure.

Definition 3.1.1 ([ACU10; ACU15]). Let j : A → E be a functor. A j-relative monad (or simply j-monad)
(t, η, (−)†) comprises

1. for each object a ∈ A, an object ta ∈ E and morphism ηa : ja→ ta;
2. for each morphism f : ja→ tb, a morphism f† : ta→ tb,

satisfying the following laws, for all a ∈ A, f : ja→ tb, g : jb→ tc:

ηa
† = 1ta f†ηa = f g†f† = (g†f)† (3.1)

A morphism τ : (t, η, (−)†) → (t′, η′, (−)‡) of j-monads consists of, for each object a ∈ A, a morphism
τa : ta→ t′a satisfying the following laws, for all a ∈ A, f : ja→ tb:

τaηa = η′a (τbf)
‡τa = τbf

† (3.2)

j-monads and their morphisms form a category RMnd(j).

It follows from the definitions that, for every j-monad (t, η, (−)†), t canonically forms a functor, and η
and † natural transformations; and every j-monad morphism τ canonically forms a natural transformation
between the induced functors [ACU15, §2.1].

Example 3.1.2. A monad relative to an identity functor is equivalently a (non-relative) monad. For every
functor j : A→ E, the functor j itself is canonically equipped with the structure of a j-monad.

In the non-relative setting, there is a strong relationship between monads and adjunctions: every adjunc-
tion induces a monad, and, conversely, every monad arises from an adjunction. This fact carries over to the
relative setting, which we now recall.

Definition 3.1.3 ([Ulm68, Definition 2.2]). Let j : A→ E be a functor. A functor ` : A→ B is left- j-relative
adjoint (or simply left- j-adjoint) to a functor r : B → E, denoted ` ja r, if there is a natural isomorphism
B(`−,−) ∼= E(j−, r−). We call such a situation a j-relative adjunction (or simply j-adjunction), and indicate
it diagrammatically by the following.

B

A E

ℓ r

j

⊣

We call B the apex of the relative adjunction.

Proposition 3.1.4 ([ACU15, Theorem 2.10]). Let j : A→ E be a functor. Every j-adjunction ` ja r induces a
j-monad with underlying functor ` ; r.

A converse is given by the Kleisli and Eilenberg–Moore constructions for relative monads (though we shall
only have need of the Kleisli construction in this chapter).
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Definition 3.1.5 ([ACU10, §2.3]). Let j : A → E be a functor and let T = (t, (−)†, η) be a j-monad. The
Kleisli category of T , denoted Kl(T ), has the same objects as A and hom-classes Kl(T )(a, b) = E(ja, tb).
The identity on an object a ∈ A is given by ηa; and the composite of morphisms f : a → b and g : b → c in
Kl(T ) is given by g†f in E. The Kleisli inclusion kT : A→ Kl(T ) is defined as the identity-on-objects functor
sending f : a → b in A to ηbj(f) : ja → tb in E. The forgetful Kleisli functor vT : Kl(T ) → E is the functor
sending a 7→ ta and f : ja→ tb in E to f† : ta→ tb in E.

Definition 3.1.6 ([ACU10, §2.3]). Let j : A → E be a functor and let T = (t, (−)†, η) be a j-monad. An
algebra for T (or simply T -algebra) comprises an object x ∈ E and, for eachmorphism f : ja→ x, a morphism
f‡ : ta→ x, satisfying the following laws, for all a ∈ A, f : ja→ x, g : ja→ tb, h : jb→ x:

f‡ηA = f (h‡g)‡ = h‡g† (3.3)

A homomorphism of T -algebras from (x, ‡) to (x′, ‡′) is a morphismw : x→ x′ inE such that, for all f : ja→
x:

(wf)‡
′
= wf‡ (3.4)

The Eilenberg–Moore category of T , denoted EM(T ), has as objects T -algebras and as morphisms T -algebra
homomorphisms. The free functor fT : A→ EM(T ) is defined by t on objects and (η−)† on morphisms. The
forgetful functor uT : EM(T )→ E is the functor forgetting the algebra structure of each object.

Definition 3.1.7. Let T be a relative monad. A relative adjunction inducing T is called a resolution of T .
A morphism of resolutions is a functor between their apices rendering commutative the triangles formed by
the left- j-adjoints and right- j-adjoints respectively. Resolutions of T and their morphisms form a category
Res(T ).

B

A E

B′

ℓ

ℓ′

r

r′

Proposition 3.1.8 ([ACU10, Theorem 3]). Let j : A→ E be a functor. Given a j-monad T = (t, (−)†, η), the
Kleisli inclusion kT is left- j-adjoint to vT . The relative adjunction induces T . Furthermore, it is initial amongst
resolutions of T .

Proposition 3.1.9 ([ACU10, Theorem 3]). Let j : A→ E be a functor. Given a j-monad T = (t, (−)†, η), the
free functor fT associated to the Eilenberg–Moore construction is left- j-adjoint to uT . The relative adjunction
induces T . Furthermore, it is terminal amongst resolutions of T .

The universal property of the Kleisli construction exhibits Kleisli resolutions as being in bijection with
relative monads. Since, as a rule, we are interested in categories rather than sets, and equivalences rather than
bijections, we might wonder whether there is a similar relationship for relative monad morphisms. This is
indeed the case, at least supposing that j is dense.

Lemma 3.1.10. Let j : A→ E be a dense functor and let T = (t, (−)†, η) and T ′ = (t, (−)‡, η′) be j-monads.
There is a bijection between the following.

1. j-monad morphisms τ : T → T ′.

2. Functors k : Kl(T )→ Kl(T ′) such that kT ; k = kT ′ .

Proof. Given a j-monad morphism τ : t⇒ t′, we form an identity-on-objects functor k : Kl(T )→ Kl(T ′) by
postcomposition by τ . The law kT ; k = kT ′ follows from the relative monad morphism law η ; τ = η′. For
the other direction, observe that, since j is dense, PE(E(j−, t−), E(j−, t′−)) ∼= [A,E](t, t′), so that, given
a functor k : Kl(T ) → Kl(T ′), we have a natural transformation t ⇒ t′. This is a relative monad morphism,
the unit law being satisfied since kT ; k = kT ′ and the extension law following from functoriality of k.
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For non-relative monads, similar statements first appear in [Mar66, Theorem 1] and [Pum70, Satz 6],
though it is also implicit in the work of Linton (cf. [Lin69a, Lemma 10.2]).

Since we have a bijection between Kleisli resolutions and relative monads, and functors between Kleisli
categories and relative monad morphisms, there is an isomorphism of categories, between the category of
j-monads, and the category of Kleisli resolutions and functors therebetween. However, this isomorphism is
not quite satisfactory, because the objects of the category of Kleisli resolutions are defined with respect to
relative monads, making the relationship somewhat tautological. We would therefore like to find a way to
characterise those relative adjunctions that are relatively opmonadic without referring to a particular relative
monad (namely, the relative monad they induce). The following result allows us to do so.

Proposition 3.1.11 (Relative opmonadicity). Let j : A→ E be a functor and consider a j-adjunction as below,
inducing a j-monad T .

B

A E

ℓ r

j

⊣

` is isomorphic to the Kleisli inclusion kT in the coslice category A/CAT if and only if ` is bijective-on-objects.

Proof. If ` is isomorphic to a Kleisli inclusion, it is bijective-on-objects, since kT is identity-on-objects by
definition. Conversely, assume ` is bijective-on-objects. By initiality of the Kleisli adjunction, and recalling
that there is a (bijective-on-objects, fully faithful)-factorisation system onCAT, there is a fully faithful functor
Kl(T ) → B factoring the j-adjunction since Kl(T )(x, y) ∼= E(jx, ty) ∼= B(`x, `y). By the 2-out-of-3
property, this functor is also bijective-on-objects and hence an isomorphism of categories.

For non-relative monads, this observation first appears as [Sch69, §1.0], though again it is also implicit
in the work of Linton; for relative monads, the observation appears to be new. The aspect that is perhaps
surprising in the generalisation to relative monads is that the characterisation of relative opmonadicity does
not depend upon j in any way: therefore, if ` forms a left j-adjoint and a left j′-adjoint, inducing distinct
relative monads, the two relative monads necessarily have the same Kleisli category.

Remark 3.1.12. The choice between considering identity-on-objects, bijective-on-objects, or
essentially-surjective-on-objects functors is trifling, and makes no essential difference to the monad–theory
correspondence, save for the strictness of the correspondences. We will follow the convention that theories
are bijective-on-objects functors for convenience, but note that our proofs carry through with minor
modifications for identity-on-objects or essentially-surjective-on-objects functors.

Since, for dense j, right j-adjoints are uniquely determined by their left j-adjoints [Ulm68, (2.4)], Kleisli
resolutions are thus determined entirely by bijective-on-objects functors that are left- j-adjoint. We define
j-theories to capture precisely this notion.

Definition 3.1.13. Let j : A→ E be a dense functor. The category Th(j) of j-theories is the subcategory of
A/CAT spanned by bijective-on-objects left- j-adjoint functors1.

It thus follows that j-theories are essentially the same as j-monads.

Theorem 3.1.14. Let j : A→ E be a dense functor. There is an equivalence of categories

Th(j) ' RMnd(j)

between the category of j-theories, and the category of j-monads.

Proof. By Lemma 3.1.10, there is an isomorphism of categories between the category of j-monads and the
category of Kleisli j-adjunctions. A bijective-on-objects left- j-adjoint functor is a j-relative Kleisli inclusion
up to isomorphism by Proposition 3.1.11, from which the result follows.

1Our definition of j-theory coincides with what [Die74, Définition 4.1.0] calls an algebraic j-theory, except that we do not require j
to be fully faithful.

12



Chapter 3. The classical monad–theory correspondence 3.2. Cocompletion-relative monads

Remark 3.1.15. We might be tempted to wonder whether the above may be strictified into an isomorphism
of categories. The situation is quite subtle. Certainly, if we are looking to obtain an isomorphism of categories,
we must take j-theories to be identity-on-objects functors, because Kleisli inclusions for relative monads are
identity-on-objects. Unfortunately, this is not quite enough. The problem is that our definition of j-theory is
nonconstructive: while density of j ensures that right relative adjoints are unique up to isomorphism, it does
not give us a canonical right relative adjoint for each left- j-adjoint functor. The relative monad associated
to a left- j-adjoint functor is therefore determined only up to isomorphism. To address this shortcoming,
one might wish to define a j-theory to be an identity-on-objects functor equipped with a right j-adjoint. In
this case, we obtain an isomorphism of categories. We satisfy ourselves with an equivalence here to simplify
exposition; save for some additional bookkeeping, there is no difference between the approaches.

Remark 3.1.16. Throughout, we made the assumption that j is dense. The reader may wonder whether
this is truly necessary, or whether the assumption may be relaxed. The answer is that, without density, the
fundamental theorems fail to hold in general. For instance, when j is not dense, right j-adjoints are not
uniquely determined (cf. [Ulm68, (2.5)]). The failure of uniqueness may be rectified in line with the previous
remark by equipping right j-adjoints as structure, so this objection perhaps seems a minor one; a greater
problem is that Lemma 3.1.10 does not hold without density of j: if j is not assumed dense, then morphisms
of j-theories are no longer determined by functors between Kleisli categories. One could relax the notion of
morphism, but at this point, the resemblance to algebraic theories becomes tenuous. As will be evidenced
throughout the later chapters, density of j is essentially necessary to have a good theory of j-relative monads
more generally.

3.2 Cocompletion-relative monads
We shall now relate our notion of j-theory to the classical notion of algebraic theory [Law63]. The first step
towards doing so is the following observation: while being left adjoint is a relatively strong condition for a
functor, being a left adjoint relative to the Yoneda embedding is a very weak condition. In particular, every
functor from a small category A is a leftよA-relative adjoint, a fact which follows directly from the Yoneda
lemma.

Definition 3.2.1 ([BF99, Definition 1.1]). A functor f : A→ B is admissiblewhen, for all b ∈ B, the hom-class
B(f−, b) is a small functor (that is, a small colimit of representables). In this case, we denote by Nf : B →
PA = B(f−,−) the nerve of f .

Proposition 3.2.2. Let f : A→ B be an admissible functor. There is aよA-relative adjunction

B

A PA

f

よA

Nf

⊣

Proof. We have

B(f−,=) ∼= PA(よA−, B(f−,=)) (Yoneda lemma)
= PA(よA−, Nf−) (definition of Nf )

so that f よA
a Nf .

More abstractly, this proposition is a consequence of the fact that the Yoneda embeddingよA : A → PA
exhibitsPA as the completion ofA under small colimits. Assuming that f : A→ B preserves certain colimits,
we obtain a stronger result. First observe that if A has Ψ-colimits, for some class Ψ of shapes, then the
Yoneda embedding restricts to a functorよΨ

A : A→ PΨA because the hom-functor preserves limits in its first
argument.
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Proposition 3.2.3. LetΨ be a class of shapes, and let f : A→ B be an admissibleΨ-cocontinuous functor. Then
the relative adjunction f よA

a Nf restricts to a relative adjunction.

B

A PΨA

f

よΨ
A

Nf

⊣

Proof. If f is Ψ-cocontinuous, then each Nf (b) is Ψ-continuous for the same reason that the Yoneda embed-
ding is continuous: namely, by the universal properties of (co)limits.

Recall that a (finitary, monosorted) algebraic theory is an identity-on-objects functor F1 → B strictly
preserving finite coproducts [Law63, §II.1], where we denote by F : Cat → Cat the cocompletion of a small
category under strict finite coproducts (cf. [Bén85, (3.5)]). It therefore follows from Proposition 3.2.3 that every
algebraic theory is left-adjoint relative to the inclusion F1 ' FinSet ↪→ Set ' [F1op, Set]F. It so happens that
the converse is also true: every such left relative adjoint preserves coproducts.

Proposition 3.2.4. Let j : A → E be an admissible functor and let ` ja r be a j-relative adjunction. Then ` is
admissible and, for any class Φ of shapes, if j is Φ-cocontinuous, then so is `.

Proof. First, since ` ja r, if j is admissible, i.e. E(j−, e) is a small presheaf for all e ∈ E, then so is `, since
for all b ∈ B, we have B(`−, b) ∼= E(j−, rb), which is a small presheaf by assumption.

For colimit preservation, observe that:

B(`(colimϕx), y) ∼= E(j(colimϕx), ry) (` ja r)
∼= E(colimϕ(jx), ry) (j is Φ-cocontinuous)
∼= limϕE(jx, ry) (universal property of colimits)
∼= limϕB(`x, y) (` ja r)
∼= B(colimϕ(`x), y) (universal property of colimits)

The colimit-preservation property in the above first appears as [Ulm68,Theorem 2.13]. Observe that, when
j is the identity, we recover the well-known fact that left adjoints preserve all colimits2.

The final step is to establish that the relative monad–theory correspondence of the previous section extends
to a monad–theory correspondence. In fact, this follows directly from [ACU15, Theorem 4.8] by considering
the fixed points of the adjunction therein, but we will give a more conceptual proof. Given a class Φ of
shapes, we denote by (Φ, µ, η) the 2-monad on CAT for the cocompletion of locally-small categories under
Φ-colimits [KL00] and by CATΦ and CATΦ its Kleisli and Eilenberg–Moore bicategories respectively.

Proposition 3.2.5. Let Φ be a class of shapes and let A be a category. There is an equivalence of categories

RMnd(ηA) ' MndΦ(ΦA)

between the category of ηA-monads and the category of Φ-cocontinuous monads on ΦA, commuting with the
process of taking algebras.

Proof. ηA-relative monads and monads are both monoids in appropriate monoidal categories, the former by
[ACU15, Theorem 3.5, Theorem 4.4] since ηA is well-behaved, and the latter by definition:

RMnd(ηA) ∼= Mon(CATΦ(A,A)) (3.5)
MndΦ(ΦA) = Mon(CATΦ(ΦA,ΦA)) (3.6)

The equivalence then follows from full faithfulness of the embedding of the Kleisli bicategory into the Eilen-
berg–Moore bicategory. That this commutes with taking algebras follows from [ACU15, §4.4].

2In general, r will not preserve limits. However, when j is dense, r preserves all limits by the usual argument.
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The monad–theory correspondence now follows.

Theorem 3.2.6. Let Ψ and Φ be classes of shapes, and let A be a Ψ-cocomplete category. If ΦA ' PΨA, then
there is an equivalence of categories

Th(Ψ, A) ' MndΦ(ΦA)

between the full subcategory of A/CAT spanned by Ψ-continuous admissible identity-on-objects functors, and
the category of Φ-cocontinuous monads on ΦA.

Proof. We have an equivalence Th(よΨ
A) ' MndΦ(ΦA) from Theorem 3.1.14 and Proposition 3.2.5 given

the equivalence ΦA ' PΨA, and by Proposition 3.2.3 and Proposition 3.2.4, an admissible functor preserves
Ψ-limits if and only if it is a leftよΨ

A-relative adjoint, so that Th(Ψ, A) ' Th(よΨ
A).

The condition relating Ψ and Φ in the correspondence above may appear unexpected. It is related to the
notion of soundness [Adá+02, Definition 2.2] for a class of shapes [DV14, Proposition 3.8]. In our case, it
is required to express the limit-preservation condition arising for nerves in Proposition 3.2.3 in terms of a
cocompletion property necessary to invoke Proposition 3.2.5. The condition thus acts as a bridge between the
characterisations of relative adjointness and monadicity.

In our motivating example, we may take Ψ to be the class of finite discrete categories (representing finite
coproducts), and Φ to be the class of sifted categories (representing sifted colimits). In this case, soundness is
satisfied: we have an equivalence Sind(−) ' [(−)op, Set]F for small categories with finite coproducts [AR01,
Corollary 2.8]. Therefore, we recover the classical monad–theory correspondence.

Corollary 3.2.7. There is an equivalence of categories

Law(1) ' Mndsf(Set)

between the category of finitary monosorted algebraic theories, and the category of sifted-cocontinuous monads
on Set.

Proof. Let A = F, Ψ be the class of finite discrete categories, and Φ be the class of sifted categories. The
equivalence follows directly from Theorem 3.2.6, since Ψ is sound and Sind(F) ' Set; the admissibility
condition is trivial because F is small. In this case, j = FinSet ↪→ Set (equivalently j = F1 ↪→ Sind(F1) '
P1).

Remark 3.2.8. Finitary algebraic theories are often considered to correspond to finitary (i.e.
filtered-cocontinuous), rather than strongly-finitary (i.e. sifted-cocontinuous), monads on Set. However, an
endofunctor on Set preserves sifted colimits if and only if it preserves filtered colimits, and so these classes
of monads coincide. Morally speaking, the sifted colimits are the appropriate class to consider, because
algebraic theories are defined through finite coproduct structure, rather than finite colimit structure.

Various similar correspondences are easily captured. For instance, technically speaking, the classical
monad–theory correspondence refers to the correspondence between infinitary monosorted algebraic theo-
ries and arbitrary monads on Set [Lin66c; Lin66b], which we recover by taking A = Set, Ψ to be the
class of small discrete categories, and Φ to be the empty class, i.e. j = 1Set. (The admissibility condition
is hidden in [Lin69a, Lemma 10.2], as Linton defines infinitary algebraic theories to be left-adjoint functors
from Set, rather than functors satisfying a coproduct-preservation property.) Alternatively, we may take
j = FS ↪→ Sind(FS) ' PS for a set of sorts S to recover the monad correspondence for finitary multisorted
algebraic theories (or j = 1SetS for the infinitary variant); for any cardinal κ, we can take j = Set≤κ ↪→ Set
to obtain a monad correspondence for theories with at most κ-ary operations and equations (cf. [Die74, Ex-
emple 4.1.1]).

In Chapter 7, we will explore monad–theory correspondences arising in more general situations than
those for which soundness applies. In particular, while here we have established a monad–theory correspon-
dence only for those j-monads for which j is well-behaved [ACU15, Definition 4.1]), it is possible to relax this
assumption in some settings.
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Remark 3.2.9. It has become customary to define algebraic theories in terms of product structure3, rather
than coproduct structure. However, for our purposes, it is convenient to take Lawvere’s original definition as
primary. The two perspectives are equivalent via the duality involution on Cat. However, our monad–theory
correspondence justifies Lawvere’s perspective: strictly speaking, algebraic theories defined with product
structure correspond to comonads on Setop.

3In fact, it is common to define algebraic theories simply to be categories with finite products (cf. [AHS04, Definition 1.1]). This is
entirely dissatisfactory from the perspective of the monad–theory correspondence, as in doing so one forgets the structure of the Kleisli
inclusion that is essential in obtaining the correspondence.
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Chapter 4

Higher-order algebraic theories

4.1 Introduction
Algebraic theories were introduced by Lawvere to provide a categorical, presentation-free axiomatisation of
universal algebraic structure [Law63]. Shortly thereafter, Linton proved that algebraic theories are equivalent
to monads on the category of sets [Lin69a]. Consequently, we may view algebra through three lenses: the
equational logic of Birkhoff [Bir35]; algebraic theories; or monads. Despite the richness of universal algebra,
there are many structures throughout mathematics that are not captured thereby and, since their introduc-
tion, many generalisations and variations of algebraic theories have arisen: for instance, many-sorted alge-
braic theories [Bén68], enriched algebraic theories [Dub70b], and essentially algebraic theories [Fre72]. One
such variation is the notion of second-order algebraic theory, introduced by Fiore and Mahmoud [FM10] to
capture the variable-binding structure encountered in simple type theories such as the λ-calculus [Chu40].
Second-order algebraic theories generalise algebraic theories by permitting variable-binding operators such
as differential operators ∂, logical quantifiers ∃ and ∀, and abstraction operators λ. Fiore and Mahmoud es-
tablished a correspondence between second-order algebraic theories and the second-order equational logic of
Fiore and Hur [FH10], and later further established a correspondence with a class of abstract clones equipped
with algebraic structure [Mah11; FM14]. However, Fiore and Mahmoud did not pursue a monadic perspec-
tive. The first main contribution of the current chapter is to establish a monad–theory correspondence for
second-order algebraic theories subsuming that of the first-order setting.

Having generalised algebraic theories through the consideration of second-order operators, which, intu-
itively, are operators whose operands are first-order operators, it is natural to ask whether we might do the
same for operators of order three or higher. Our second main contribution is to generalise first- and second-
order algebraic theories to nth-order algebraic theories for arbitrary natural numbers n ∈ N, as well as to
ω-order algebraic theories, which capture structure whose operators have unbounded order. Furthermore, we
follow Bénabou in working throughout with S-sorted theories, for a fixed set S, in particular generalising the
monosorted setting of Fiore and Mahmoud for n = 2. When n = ω, we recover a categorical, presentation-
free axiomatisation of the λ-theories of Lambek and Scott [LS88]. Considering nth-order algebraic theories
directly, rather than working only with ω-order algebraic theories, is illuminating, as the structure of the
category of (n + 1)th-order algebraic theories is naturally determined by the category of nth-order algebraic
theories: in particular, we show that the category of (n+ 1)th-order algebraic theories is given by a category
of monads on the category of nth-order algebraic theories. It is natural to identify the category of 0th-order
algebraic theories with the category of sets and so, when n = 0, we recover the classical monad–theory
correspondence.

Our third main contribution is to exhibit a universal characterisation of the category of nth-order algebraic
theories as a locally strongly finitely presentable category whose subcategory of strongly finitely presentable
objects is the free cartesian category on a repeatedly-exponentiable object.

While in this chapter we pursue a purely abstract categorical understanding of higher-order structure,
we view higher-order algebraic theories as an important practical tool, particularly for the study of simple
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type theories. As such, we deem it useful also to provide a syntactic perspective, and define a notion of
presentation and equational logic for higher-order algebraic theories. This work may therefore be taken as
the starting point for a systematic treatment of higher-order algebra in the spirit of that for first-order algebra
(cf. [ARV10]), which we hope will serve to motivate further understanding and application.

4.1.1 Related work
While our notion of first- and second-order algebraic theories are standard [Law63; FM10], nth-order algebraic
theories for n /∈ {1, 2} do not appear to have previously been studied. However, structures similar to our
ω-order algebraic theories do appear in the literature.

Presentations Syntactic presentations of ω-order algebraic theories have appeared frequently in the litera-
ture; this is essentially the notion of a presentation of the simply-typed λ-calculus. For instance, see [Poi86;
LS88; Mei92; Mei95; Cro93; Joh02b], all of which are equivalent to our definition (though there is some varia-
tion in the precise formulations). Homomorphisms of presentations are rarely treated.

Cartesian-closed categories It is common in categorical algebra to take the term algebraic theory to refer
simply to a cartesian category, rather than the stricter functorial structure imposed by Lawvere [Law63] (which
are then called monosorted or one-sorted algebraic theories). In the same vein, cartesian-closed categories have
often been proposed for higher-order algebra: for instance, see [Poi86; LS88; Cro93; Joh02b], and [Hay85, §3]
for a variant involving semi-cartesian-closed categories. Though this simplifies many aspects of the theory,
there are shortcomings to this approach. In particular, the monad–theory correspondence is lost when the
functorial structure is forgotten; similarly, the elegant characterisation of the category of algebraic theories as
a locally strongly finitely presentable category only holds in the setting in which the sorts are fixed. For this
reason, we work with algebraic theories à la Lawvere [Law63] and Bénabou [Bén68].

Unityped and non-extensional ω-order algebraic theories The higher-order structure we consider is
interpreted by exponentiable structure in a cartesian category. From a type-theoretic perspective, this cor-
responds to the binding structure of the extensional simply-typed λ-calculus [Chu40], where both β- and
η-rules are present for type formers. One may also consider a notion of theory corresponding to the uni-
typed λ-calculus [Chu36]: categorically, this amounts to identifying the generating object X of an alge-
braic theory with its own exponential XX [Sco80]. For instance, see the algebraic theories of type λ-βη
of Obtułowicz [Obt77]; the Church algebraic theories of Obtułowicz and Wiweger [OW82, §5.4]; the semi-
cartesian-closed algebraic theories of Hayashi [Hay85, §2.3.2]; and the λ-theories of Hyland [Hyl17, Defini-
tion 3.1]. The latter two of these notions correspond more specifically to the intensional unityped λ-calculus,
where the η-rule is absent. However, in practice, the unityped λ-calculus is too degenerate to capture most of
the examples of interest.

4.1.2 Notation
Throughout, n ∈ Nω is taken to range over the extended natural numbers (N+{ω},≤), except where indicated
otherwise. We use the term higher-order algebraic theory to refer to an nth-order algebraic theory for arbitrary
n. The definitions and proofs for the case n = 0 are deferred to Section 4.8.

4.2 Perspectives
There are several perspectives from which higher-order structure may be viewed, each of which is distinctly
elucidating. We give an overview to provide intuition for the following development; each of these perspec-
tives has appeared separately in the literature, but, to our knowledge, the connection between them has not
previously been explicated, whichmakes it difficult for a non-expert to develop a holistic picture of the subject.
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4.2.1 Higher-order natural deduction
Universal algebra, or more precisely its associated first-order equational logic, may be seen as a natural de-
duction system in which there are two judgements, one for the well-formedness of terms, and one for their
equality. The operators of an algebra take a sequence of terms, the operands, in doing so forming a new term.
One may present an operator syntactically by an inference rule of the following form:

` t1 · · · ` tn
` f(t1, . . . , tn)

(4.1)

We read this inference rule as “given well-formed terms t1 through to tn, we may form a new well-formed
term f(t1, . . . , tn)”; we think of f as being an operator that we apply to the operands t1 through to tn. One
may consider variations on first-order equational logic by modifying the structure of these inference rules. For
example, associating a sort (or type) to each term leads to the notion of multisorted algebraic theory [Bén68;
BL70], in which inference rules may only be applied if the operands have the appropriate types. For instance,
the action of a monoid may be presented by an inference rule of the following form:

` m : M ` x : X
` act(m,x) : X

(4.2)

We read this inference rule as “given a well-formed term m of type M and a well-formed term x of type X,
we may form a new well-formed term act(m,x) of type X”. In fact, in the absence of ill-formed terms (which
arise only when one considers concrete syntax, formed through string concatenation from basic symbols), we
may drop “well-formed” and simply talk about unqualified “terms”.

Higher-order equational logic arises when one considers operators that may themselves take operators,
rather than terms, as their operands. A second-order operator may therefore be presented by an inference
rule whose premisses are themselves (first-order) inference rules. For instance, consider the following second-
order inference rule: ( ` t1 1 · · · ` t1m1

` f1(t1 1, . . . , t1m1
)

)
· · ·

( ` tn 1 · · · ` tnmn

` fn(tn 1, . . . , tnmn
)

)
` g(f1, . . . , fn)

(4.3)

We read this inference rule as “given (derivable) inference rules that take terms ti 1 through to ti ni
, thereby

forming terms fi(ti 1, . . . , ti ni
), for 1 ≤ i ≤ n, we may form a term g(f1, . . . , fn)”; we think of g as being an

operator that we apply to the inference rules f1 through to fn. Note that when we say “inference rule” for fi,
we really mean any possible derivation of a term given terms ti 1 through to ti ni : we permit the composition of
inference rules by grafting conclusions of one inference rule to a premiss of another, to form open derivations
of terms.

Similarly, we may consider third-order operators, which take second-order operators as operands, and so
on for arbitrary n ∈ N. Note that (n + 1)th-order operators with no nth-order operands are equivalently
nth-order operators: in this way, (n + 1)th-order operators strictly subsume nth-order operators. From this
perspective, 0th-order operators are equivalently constants. We may define an ω-order operator to be a kth-
order operator for some k ∈ N, so that, for an infinite family of ω-order operators, there may not be a natural
number bounding the order of the operators.

These higher-order operators may be motivated by their use in metatheoretic reasoning: by ascending to
(n + 1)th-order operators, it is possible to perform operations on nth-order operators. For example, we can
describe a second-order operator that formally adds an inverse to any unary first-order operator:(

` x
` f(x)

)
` t

` inv(f, t)

(
` x
` f(x)

)
` t

` inv(f, f(t)) ≡ t

(
` x
` f(x)

)
` t

` f(inv(f, t)) ≡ t
(4.4)

Here, inv(f, t) should be interpreted as f−1(t). In practice, as evidenced by even the simple second-order
operator above, higher-order equational logic quickly becomes unwieldy when presented recursively in this
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nested natural deductive style, but it nevertheless provides a useful intuition. This approach to higher-order
reasoning was explored by Schroeder-Heister [Sch84] from a purely syntactic perspective.

4.2.2 Equational logics with metavariables
First-order operators are usually defined as symbols taking terms as operands: for any compatible choice of
operand terms, we may form a new term, which may be considered the application of that operator. However,
there is another choice: we may instead define operators as symbols parameterised by a context of variables,
such as in the following inference rule:

x1, . . . , xn ` f (4.5)

We read this inference rule as “we may form a term f in any context with n variables”; and think of f as being
some term containing free variables (this is called an open term): to apply the operator f, we substitute each
of the variables x1 through to xn by terms t1 through to tn, as in the following:

` t1 · · · ` tn
` f[t1/x1] · · · [tn/xn]

(4.6)

Observe that this inference rule has the same form as (4.1): the difference is simply in whether we form a
compound term f(t1, . . . , tn) or substitute for free variables in an open term f[t1/x1] · · · [tn/xn]. Note also
that, in this style, the variables by which the term f is parameterised do not appear in the term itself; this
information is implicitly recorded in the context. In an appropriate, formal sense, this perspective is equivalent
to that of Section 4.2.1; one may consider premisses ` ti in empty contexts to correspond to variables xi in
the context of the conclusion, and vice versa. It is natural to then ask whether there is an analogue, in terms
of variables and substitution, for the higher-order operators of Section 4.2.1. It turns out that there is such an
analogue: one may present second-order operators as terms in metavariable contexts [Acz78; Ham04; FH10].
Formally, metavariables are variables that are themselves parameterised by variables: we can instantiate any
metavariable by providing terms for each of its parameterising variables, akin to the application of (4.1) or
substitution of (4.6). For example, the metavariable context below has n metavariables, each of which is
parameterised bymi variables.

(x1 1, . . . , x1m1
)x1, . . . , (xn 1, . . . , xnmn

)xn (4.7)

A second-order operator may be defined, similarly to (4.5), as a symbol parameterised by a context of metavari-
ables, rather than simply variables, such as in the following inference rule:

(x1 1, . . . , x1m1
)x1, . . . , (xn 1, . . . , xnmn

)xn ` g (4.8)

We read this inference rule as “we may form a term g in any context with n metavariables, the ith of which is
parameterised bymi variables”; and think of g as some term containing free metavariables. Just as variables
have an associated notion of substitution, metavariables have an associated notion of
meta-substitution [Ham04; Fio08; FH10]: in particular, while variables x may be substituted by terms t; so
may metavariables (x1, . . . , xn)x be substituted by open terms x1, . . . , xn ` f . This allows us to apply a
second-order operator as in (4.8), by meta-substituting each of the metavariables (x1 1, . . . , x1m1

)x1 through
(xn 1, . . . , xnmn

)xn by open terms x1 1, . . . , x1m1
` f1 through to xn 1, . . . , xnmn

` fn, as below (we use
the same notation for substitution and meta-substitution):

x1 1, . . . , x1m1
` f1 · · · xn 1, . . . , xnmn

` fn
` g[f1/x1] · · · [fn/xn]

(4.9)

Observe that this inference rule has the same form as (4.3), under the relationship between the first-order
operators exhibited by (4.1) and (4.6). As in the first-order setting, these two perspectives on second-order
operators are equivalent. We may similarly describe third-order operators by way of meta-metavariables,
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meta-metasubstitution, and so on. In theory, we could combine the two perspectives, introducingmetavariable
contexts to the formalism of Section 4.2.1, but we gain no extra expressivity by doing so.

The perspective of equational logic with metavariables is well-suited to describing axiom schemata, which
are typically formalised nonfinitarily by infinite families of axioms (requiring a suitably expressive metathe-
ory): metavariables permit axiom schemata to be described finitarily, with each axiom induced by a schema
arising from a higher-order operator bymeta-substitution (cf. [FH13, §1]). In this sense, the notion of metavari-
able described here aligns with that of the traditional notion in mathematical logic. This is the perspective
taken by Fiore and Hur [FH10] in the setting of second-order equational logic (cf. [Ham04; Fio08]). In their set-
ting, contexts contain both metavariables and variables. However, just as first-order operators are equivalent
to second-order operators with no first-order operands, so variables are equivalent to nullary metavariables
and there is no loss in generality to consider solely contexts of metavariables.

4.2.3 Higher-order logical frameworks
Logical frameworks are deductive systems whose reasoning is formally expressed via a type theory, which
plays the role of the metatheory. In particular, those type theories possessing function types form the metathe-
ories for higher-order logical frameworks. Traditionally, the study of categorical theories (such as algebraic
theories, essentially algebraic theories, geometric theories, and so forth) has been distinct from the study of
logical frameworks, but the objects of interest in both fields are the same, albeit in different dress. For exam-
ple, (multisorted) universal algebra can equivalently be viewed as the logical framework corresponding to the
simply-typed pairing calculus: the fragment of the simply-typed λ-calculus with products but without function
types (cf. [Cro93, Chapter 3]); this view lends itself as a useful bridge between the approaches of categorical
algebra and programming language theory.

Following this observation, there is an evident candidate for the metatheory associated to higher-order
equational logic: namely, the simply-typed λ-calculus [Chu40]. Metavariables may be represented in the
simply-typed λ-calculus by variables of function types, while meta-substitution is given by the ordinary sub-
stitution of λ-terms. In fact, it is common in computer science to use the simply-typed λ-calculus to repre-
sent variable-binding operators, treating the λ-abstraction operator as a canonical variable-binding operator
through which all others may be defined: this is essentially the motivating idea behind higher-order univer-
sal algebra [Mei95; Mei92; Poi86], and higher-order abstract syntax1 [PE88]. However, one could argue
that this practice was formally justified only once the binding structure of the simply-typed λ-calculus was
proven to be universal, in the sense of being equivalent to generic algebraic binding structure by Fiore and
Mahmoud [FM10; Mah11; FM14]. Following their development, we may in good conscience present nth-order
operators as operators with restricted order within the simply-typed λ-calculus. For instance, we may present
a second-order operator by a (sorted) function constant, such as the following.

` g : (Un1 � U)× · · · × (Unn � U) � U (4.10)

Here, g is thought of as an operator taking functions as operands, and is equivalent to (4.8) by uncurrying.
Given terms ` f1 : Un1 � U through to ` fn : Unn � U, corresponding to open terms by uncurrying, we
may form a new term g(f1, . . . , fn) using the application operation of the simply-typed λ-calculus:

` f1 : Un1 � U · · · ` fn : Unn � U

` g(f1, . . . , fn) : U
(4.11)

Note that, though we distinguish informally between the operators defined using the simply-typed λ-calculus
and the operators of the simply-typed λ-calculus itself (such as λ-abstraction and application), there is no for-
mal difference between the two from this perspective; this is analogous to the formalism of algebraic theories,
in which the structural operations are not distinguished amongst the algebraic operations.

The presentation of higher-order equational logic by the simply-typed λ-calculus is the one we choose
to use throughout this chapter, as the syntax is particularly elegant and will be the most familiar to those
accustomed with categorical logic and type theory.

1Wenote that themetalogic of [PE88] is also polymorphic, but reserve the term higher-order abstract syntax for the fragment restricted
to the simply-typed λ-calculus, following the tradition of second-order abstract syntax [FPT99].
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4.2.4 Simply-typed λ-calculi
We consider the simply-typed λ-calculus in Section 4.2.3 as a logical framework for higher-order deduction.
However, extensions of the simply-typed λ-calculus are often instead studied for the purpose of defining pro-
gramming languages qua simple type theories. While, in a logical framework, the primitive type and term
operators have philosophical import – for instance, product types correspond to conjunction, and function
types to implication – in a programming language, they are concrete syntactic devices, and their meaning
is defined through their behaviour. Practically, these perspectives are similar, but the distinction between
taking the simply-typed λ-calculus as a metatheory, or as a programming language, is conceptually impor-
tant (indeed, the relationship between these perspectives forms the essence of the Curry–Howard correspon-
dence [How80]).

In practice, the difference between this perspective and that of Section 4.2.3 manifests itself in whether the
purpose of considering the simply-typed λ-calculus is to study the calculus itself, or whether the purpose is
to define higher-order structures within the calculus viewed as a metatheory.

4.3 Presentations and translations
We begin the development by describing an equational logic for higher-order algebraic theories, based on
the perspective of the simply-typed λ-calculus as a logical framework for higher-order equational logic. This
allows us to present various examples in Section 4.4, motivating the study of higher-order structures, and
gives a concrete syntactic intuition for several of the constructions that follow.

As we are interested in nth-order structure, rather than simply the ω-order structure that is present in
the classical simply-typed λ-calculus, we must restrict the calculus so that the order of each type is limited,
intuitively by forbidding the construction of arbitrarily-nested function types. We start by giving examples of
the order of several types to aid intuition. Below, B is some base type.

Order Types
0 1
1 B B× B (B× B)× B B× (B× B)
2 B � B B× B � B B � B× B B � B � B
3 (B � B) � B (B× B � B) � B (B � B) � (B � B) � B

Remark 4.3.1. Throughout, we use order to refer to the order of operators, and by extension their types and
calculi. For us, the second-order λ-calculus refers to a simply-typed λ-calculus the types of whose function
arguments may be at most first-order, rather than the polymorphic λ-calculus, which has also gone by that
name.

The full nth-order simply-typed λ-calculus is presented as a deductive system in Figure 4.1, parameterised
by a set of sorts (base types) S. For those familiar with the simply-typed λ-calculus, the only differences are the
definition of order (ord), and the restricted function-type formation (�-foRm) and λ-abstraction (�-intRo)
rules.

ord(1) def
= 0

ord(B) def
= 1 (B ∈ S)

ord(X × Y )
def
= max(ord(X), ord(Y ))

ord(X � Y )
def
= max(ord(X) + 1, ord(Y ))
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empty
· ctx

Γ ctx X ty
ext

Γ, x : X ctx
vaR

Γ, x : X,∆ ` x : X

(B ∈ S) base
B ty

1-foRm
1 ty

X ty Y ty
×-foRm

X × Y ty

X ty ord(X) < n Y ty �-foRm
X � Y ty

1-intRo
Γ ` 〈〉 : 1

Γ ` u : 1
1-η

Γ ` u ≡ 〈〉 : 1

Γ ` a : X Γ ` b : Y ×-intRo
Γ ` 〈a, b〉 : X × Y

Γ ` p : X × Y
×-elim1

Γ ` π1(p) : X
Γ ` p : X × Y

×-elim2
Γ ` π2(p) : Y

Γ ` a : X Γ ` b : Y ×-β1
Γ ` π1〈a, b〉 ≡ a : X

Γ ` a : X Γ ` b : Y ×-β2
Γ ` π2〈a, b〉 ≡ b : Y

Γ ` p : X × Y
×-η

Γ ` 〈π1p, π2p〉 ≡ p : X × Y

Γ, x : X ` t : Y ord(X) < n �-intRo
Γ ` λx : X. t : X � Y

Γ ` f : X � Y Γ ` a : X �-elim
Γ ` f a : Y

Γ, x : X ` t : Y Γ ` a : X �-β
Γ ` (λx : X. t) a ≡ t[a/x] : Y

Γ ` f : X � Y �-η
Γ ` λx : X. f x ≡ f : X � Y

Rules are given up to α-equivalence.
t[a/x] denotes the substitution of the term a for the free variable x in the term t.

Context extension is defined inductively by repeated variable extension.

Figure 4.1: The nth-order simply-typed λ-calculus on S (for n > 0).

When n = 1, we recover the simply-typed pairing calculus, the fragment of the simply-typed λ-calculus
with product types, but not function types. When n = ω, we recover the classical simply-typed λ-calculus.
It is well known that the categorical semantics of the simply-typed pairing calculus (equivalently, equational
logic) is given by cartesian categories [Law63]; while the categorical semantics of the simply-typed λ-calculus
is given by cartesian-closed categories [Lam80; LS88], and so the less syntactically-inclined reader should
understand the nth-order simply-typed λ-calculus to correspond to some class of cartesian categories with a
limited number of exponentials. A precise categorical treatment for n ∈ N+

ω is deferred till Section 4.5.

Remark 4.3.2. In this chapter only, we will consider algebraic theories to be defined with respect to cartesian
structure, rather than cocartesian structure, to aid comparison with traditional approaches to the categorical
semantics of type theories.

Remark 4.3.3. Presenting the equational logics of higher-order algebraic theories as order-limited λ-calculi
leads to several simplifications over previous approaches. For example, the meta-substitution operation of
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Fiore [Fio08] is given in our framework by the substitution of a second-order variable by a λ-abstraction. The
near-semiring compatibility structure between substitution and meta-substitution observed by Fiore [Fio16]
then follows directly from the associativity of substitution. On the other hand, our approach requires us to rea-
son about terms up to βη-equivalence; in contrast, the second-order equational logic of Fiore and Hur [FH10],
which may be viewed as the βη-normal fragment of the second-order simply-typed λ-calculus, requires no
consideration of βη-equivalence, at the expense of possessing multiple forms of variable and substitution.

We now describe presentations for higher-order algebraic theories using the nth-order simply-typed
λ-calculus; our definitions are analogous to the standard definitions from universal algebra [Bir35] and
present no surprises. For the remainder of this section, we consider only n > 0; we discuss the n = 0 case in
Section 4.8.

Definition 4.3.4. Denote by Λn(S) the set of types of the nth-order simply-typed λ-calculus, generated from
the set S of sorts according to the rules of Figure 4.1.

Definition 4.3.5. An S-sorted nth-order signature consists of a set O of operators and a function
|−| : O → Λn(S)× S. Given an operator o ∈ O for which |o| = (X,B), we call X the arity of o, and B the
coarity of o. Denote by Λ(O,|−|) the family of terms (indexed by their context and type) generated by
extending Figure 4.1 by the following axiom schema:

Γ ` t : X o-op (|o ∈ O| = (X,B))
Γ ` o(t) : B

Definition 4.3.6. An S-sorted nth-order presentation Σ consists of an S-sorted nth-order signature (O, |−|)
and a set E ⊆

∑
(X,B)∈Λn(S)×S Λ(O,|−|)(X,B)2 of equations. Denote by ΛΣ the family of terms (indexed by

their context and type) generated by extending Λ(O,|−|) by the following axiom schema:

Γ ` t : X
(l, r)-eq ((X,B, l, r) ∈ E)

Γ ` l[t/x] ≡ r[t/x] : B

We denote by QΣ : Λ(O,|−|) ↠ ΛΣ the quotient of Λ(O,|−|) by the equations of Σ.

There are two natural notions of morphism between presentations: the first, which we call transliterations,
are homomorphisms between signatures, mapping operators in one presentation to operators in another;
the second, which we call translations following Fiore and Mahmoud [FM10], instead map operators in one
presentation to terms in another. Morphisms of presentations are frequently elided in treatments of categorical
logic, but are useful practically; we give several examples in Section 4.4.

Definition 4.3.7. LetΣ = (O, |−|, E) andΣ′ = (O′, |−|′, E′) be S-sorted nth-order presentations. A translit-
eration from Σ to Σ′ consists of a function f : O → O′ such that |f(o)|′ = |o| for all o ∈ O; and such that,
for all (X,B, l, r) ∈ E, we have that QΣ(l) = QΣ(r) implies QΣ′(f(l)) = QΣ′(f(r)), where f extends
congruently from operators to terms in the usual manner.

S-sorted nth-order presentations and transliterations form a category Preslitn (S), with composition and
identities inherited from Set.

Definition 4.3.8. Let Σ = (O, |−|, E) and Σ′ = (O′, |−|′, E′) be S-sorted nth-order presentations. A trans-
lation from Σ to Σ′ consists of a function f :

∏
o∈O Λ(O′,|−|′)(|o|), such that, for all (X,B, l, r) ∈ E, we have

that QΣ(l) = QΣ(r) implies QΣ′(f(l)) = QΣ′(f(r)), where f extends congruently from operators to terms
in the usual manner.

S-sorted nth-order presentations and translations form a category Presn(S), with identities given by in-
clusions, and compositions g ◦ f given by composing f with the congruent extension of g to terms.

4.4 Examples
We give a range of examples of presentations and translations for higher-order algebraic theories.
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Example 4.4.1. The unityped λ-calculus [Chu36] is a second-order algebraic theory presented by a single sort
U together with the following operators and equations.

Γ ` f : U Γ ` x : U
U-intRo

Γ ` app(f, x) : U

Γ ` f : U � U
U-elim

Γ ` abs(f) : U

Γ ` f : U � U Γ ` u : U
U-β

Γ ` app(abs(f), u) ≡ f u : U

The unityped λ-calculus is called extensional when equipped with the U-η rule.

Γ ` f : U
U-η

Γ ` abs(λx : U. app(f, x)) ≡ f : U

The continuation-passing style transform forms a second-order translation from the unityped λ-calculus to
itself [Mah11, Example 6.2(3)].

Example 4.4.2. The simply-typed λ-calculus on a set of base types S is an Λω(S)-sorted second-order alge-
braic theory, presented by the usual rules for the simply-typed λ-calculus (e.g. those for n = ω in Figure 4.1).
Note that this example demonstrates that we may express arbitrary higher-order structure in a second-order
algebraic theory, but only given an infinite set of sorts.

Example 4.4.3. Thenatural numberswith addition andmultiplication form amonosorted first-order algebraic
theory: the theory of arithmetic. There is a second-order translation from the theory of arithmetic to the
unityped λ-calculus given by Church encoding [Mah11, Example 6.2(2)].

Example 4.4.4. For all n ∈ N, nth-order logic is an (n+1)th-order algebraic theory. Higher-order logic is an
ω-order algebraic theory. Analogously, Hilbert’s ε-calculus is a second-order algebraic theory, for which the
choice operator ε is second-order (cf. [EO10b]).

Example 4.4.5. Staton’s parameterised algebraic theories [Sta13a; Sta13b] are {P, T}-sorted2 second-order
algebraic theories whose binding operands have arity Pn � T for n ∈ N+ and whose operations with coarity
P are monosorted. Consequently, examples of parameterised algebraic theories, such as Fiore and Staton’s
theory of jumping [FS14], and the equational theory of the Beta-Bernoulli process [Sta+18], are also examples
of second-order algebraic theories.

Example 4.4.6. Context-free expressions, which extend regular expressions with a least fixed-point operator
µ [KY19], form a monosorted second-order algebraic theory.

Example 4.4.7. Plotkin’s axiomatisation of partial differentiation [Plo20] is a monosorted second-order alge-
braic theory axiomatising the operation of evaluating a derivative at a point.

Γ ` f : R � R Γ ` x0 : R
Γ ` ∂f(x0) : R

Example 4.4.8. The simply-typed λ-calculus with sum types extends Example 4.4.2 with coprojection and
case-splitting operations.

Γ ` a : A
+-intRo1

Γ ` inl(a) : A+ B
Γ ` b : B

+-intRo2
Γ ` inr(b) : A+ B

Γ ` s : A+ B Γ ` f : A � C Γ ` g : B � C
+-elim

Γ ` case(s, f, g) : C

2Multisorted parameterised algebraic theories, as introduced in [Sta13b], may be represented similarly.
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Γ ` a : A Γ ` f : A � C Γ ` g : B � C
+-β1

Γ ` case(inl(a), f, g) ≡ f a : C

Γ ` b : B Γ ` f : A � C Γ ` g : B � C
+-β2

Γ ` case(inr(b), f, g) ≡ g b : C
Γ ` s : A+ B Γ ` h : A+ B � C

+-η
Γ ` case(s, h inl(a), h inr(b)) ≡ h s : C

Example 4.4.9. Type-theoretic control operators are presented by two sorts {A,Z} together with third-order
operators, subject to various equations, typically forcing Z to be uninhabited. Examples include Felleisen and
Friedman’s control operator [FF86; Gri89] and call/cc [Hof95], given respectively by the following inference
rules.

Γ ` f : (A � Z) � Z

Γ ` C(f) : A
Γ ` f : (A � Z) � A

Γ ` call/cc(f) : A

There is a third-order translation from call/cc to C (described in [EO10a] as a monad morphism from the selec-
tion monad to the continuation monad) that maps call/cc to the term f : (A � Z) � A ` C(λg. g (f g)) : A.

We remark that the axiomatisation of control operators by higher-order operators suggests it may be
fruitful to study computational effects such as continuations from the perspective of higher-order algebraic
theories (cf. [Fio]), as opposed to large algebraic theories such as in [Hyl+07]. Higher-order algebraic theories
are much more well-behaved than large algebraic theories in general: for instance, unlike large algebraic
theories, higher-order algebraic theories are closed under small colimits (Corollary 4.6.9).

4.5 Higher-order algebraic theories
Algebraic theories provide a presentation-free axiomatisation of universal algebraic structure [Law63]: any
given algebraic structure may be presented in many different ways, and it is often useful to work with a single
invariant structure, rather than an individual presentation. Higher-order algebraic theories serve the same
function for the higher-order algebraic structure of Section 4.3. However, while the semantic, categorical
perspective is typically more conducive to proofs, the syntactic perspective often offers helpful intuition and
we will frequently refer to it when introducing new concepts.

We recall some standard definitions to establish terminology. We use strict to mean that canonical isomor-
phisms are identities.

Definition 4.5.1. A category (resp. functor) is cartesian if it admits (resp. preserves) finite products. Cartesian
categories, cartesian functors, and natural transformations3 form a 2-category Cart. A cartesian category
(resp. functor) is strict if it is so as monoidal category (resp. functor). A category (resp. functor) is cartesian-
closed if it is cartesian and, for every objectX , the functorX×(−) admits a (resp. preserves the) right adjoint.

As suggested in Section 4.3, the categorical structure of the nth-order simply-typed λ-calculus lies between
that of cartesian categories and cartesian-closed categories. In an algebraic theory, the structure of interest –
namely, the finite products – is global, since we may take the product of any pair of objects; the same is true in
an ω-order algebraic theory, where every object is exponentiable. However, in nth-order algebraic theories in
general, only some objects are distinguished by exponentiability. Consequently, to define nth-order structure
requires a little more complexity than first- or ω-order structure, as we must impose structure only on the
generating sorts, rather than on every object.

Definition 4.5.2. An object X in a cartesian category is exponentiable if X × (−) has a right adjoint (−)X .
A fully faithful functor I : C ↪→ D is pointwise exponentiable4 if, for every object X ∈ C , the object IX is
exponentiable in D . A subcategory is exponentiable if its inclusion functor is pointwise exponentiable.

3Natural transformations are automatically monoidal for cartesian monoidal structure.
4To be distinguished from exponentiability of I in the functor category [C ,D ].

26



Chapter 4. Higher-order algebraic theories 4.5. Higher-order algebraic theories

Definition 4.5.3. We define tetration for an object X in a cartesian category inductively, whenever the req-
uisite powers exist; intuitively, tetration is iterated exponentiation.

X ↑↑ 0 def
= 1 X ↑↑ (n+ 1)

def
= XX↑↑n

An object X is n-tetrable if, for all 0 ≤ i ≤ n, the object X ↑↑ i is exponentiable. An object is ω-tetrable if
it is n-tetrable for all n ∈ N. A fully faithful functor I : C ↪→ D between cartesian categories is pointwise
n-tetrable if, for every object X ∈ C , the object IX is n-tetrable in D . A subcategory is n-tetrable if its
inclusion functor is pointwise n-tetrable.

It follows that every object in a cartesian category is 0-tetrable, and is 1-tetrable if and only if it is expo-
nentiable. In a cartesian category, the terminal object is ω-tetrable, as is every object in a cartesian-closed
category. A product Πi∈IXi is n-tetrable if and only if each multiplicand Xi is n-tetrable.

Definition 4.5.4. A cartesian functor F : C → D preserves n-tetrable objects if, for each n-tetrable object
X ∈ C and 0 ≤ i ≤ n, the canonical map F (X ↑↑ i)→ FX ↑↑ i is invertible.

For the purposes of this chapter, we shall take an S-sorted algebraic theory to be a strict cartesian functor
L : L(S) → L , where L(S) (the theory of equality) is the free strict cartesian category on S. This is dual to
our convention elsewhere in this thesis (where algebraic theories are cocartesian functors from F ∼= Lop), but
facilitates more convenient comparison with the work of Fiore and Mahmoud [FM10]. We now introduce the
analogue of L(S) in the nth-order setting. L0(S) is necessarily defined separately, in Section 4.8.

Definition 4.5.5. Ln+1(S) is the free n-tetrable supercategory of S. That is, Ln+1(S) is the (essentially
unique) strict cartesian category for which there exists a fully faithful n-tetrable subcategory
F : S ↪→ Ln+1(S) such that, given any category C for which S is a strict n-tetrable subcategory, there is a
unique strict cartesian functor Ln+1(S) → C strictly preserving n-tetrable objects and making the
following triangle commute.

Ln+1(S) C

S
F

While defining Ln+1(S) up to isomorphism by this universal property will be sufficient for the later de-
velopment, we give an explicit construction to prove its existence.

Definition 4.5.6. Denote by Tree(S) = µX.X2 + S the set of binary trees whose leaves are labelled by
elements of S. The left-width of a binary tree is defined as the maximum number of left-steps from its root to
any leaf, explicitly by the following function ` : Tree(S)→ N, where πdenotes coprojection.

`( π

1(l, r)) = max(1 + `(l), `(r)) `( π

2(B)) = 1 (B ∈ S)

Denote by Treen(S) the restriction of Tree(S) to those trees t such that `(t) ≤ n, and by Coln(S) =
(Treen(S))⋆ the set of ordered lists of such trees5.

There is a canonical injective function n : Treen(S) → Λn(S) mapping S-labelled trees to types of the
nth-order simply-typed λ-calculus,

n(

π

1(l, r)) = n(l) � n(r) n(

π

2(B)) = B (B ∈ S)

which extends to a function n : Coln(S)→ Λn(S),

n([t1, . . . , tn]) =
∏

1≤i≤n

n(ti)

(where by convention we take
∏

to associate to the left).
5Col is short for “colonnade”, a row of trees.
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Definition 4.5.7. We denote by Λn(S) the classifying category of the nth-order simply-typed λ-calculus6.
Explicitly, Λn(S) has

• objects, the types of the nth-order simply-typed λ-calculus on S;
• morphisms X → Y , the (≡-equivalence classes of) terms x : X ` t : Y ;
• identity morphisms X → X , variable projections x : X ` x : X ;
• the composition X → Y → Z of terms x : X ` s : Y and y : Y ` t : Z being the substitution
x : X ` t[s/y] : Z .

Proposition 4.5.8. Let n ≥ 1. Ln(S) is isomorphic to the full subcategory of Λn(S) on Coln(S).

Proof. That Λn(S) has the correct universal property is clear from the usual classifying category construction
for the simply-typed λ-calculus (cf. [Cro93, Chapter 4]). The function  is essentially surjective, assigning to
each type of the nth-order simply-typed λ-calculus a canonical normal form by eliminating the isomorphisms
induced by associativity and unitality of the finite products, the unit and zero for exponentiation, currying,
and distributivity of exponentials over finite products. This permits a strict choice of finite products and
exponentials inΛn(S). The full image of  therefore defines a categoryLn(S) satisfying the universal property
of Definition 4.5.5.

Note that, while we take the morphisms of Ln(S) to be equivalence classes of terms quotiented by the
β- and η-laws of Figure 4.1, we could equivalently take βη-normal forms, which are canonical inhabitants of
each equivalence class. In the case n = 2, this aligns more closely with the approach of Fiore and Mahmoud,
and is essentially the philosophy of lambda-free logical frameworks in the sense of [Ada08], where terms are
given through parameterisation and instantiation, rather than abstraction and application.

Given this syntactic construction of Ln(S), we can concretely relate tetrability in a cartesian category to
order in the nth-order simply-typed λ-calculus. Tetrability is inverse to order: a type in the nth-order algebraic
theory has order 1 ≤ k ≤ n if it is (n − k)-tetrable as an object of Ln(S); the base types of the nth-order
simply-typed λ-calculus, having order 1, are therefore (n− 1)-tetrable in Ln(S).

Proposition 4.5.9. L1(S) is the free cartesian category on S, while Lω(S) is the free cartesian-closed category
on S.

Proof. The first statement is trivial, since every object in a cartesian category is 0-tetrable. For the second,
observe that every object in Lω(S) is exponentiable, exhibiting Lω(S) as cartesian-closed, from which the
universal property follows.

Proposition 4.5.10. The canonical injective-on-objects functor In : Ln(S) → Ln+1(S) induced by Defini-
tion 4.5.5 is fully faithful, and hence exhibits Ln(S) as an exponentiable subcategory of Ln+1(S).

Proof. By Proposition 4.5.8, we can view the hom-sets Ln(S)(Γ,∆) and Ln+1(S)(Γ,∆), for Γ,∆ ∈ Coln(S)
as the sets of terms

∏
i Λn(S)(Γ,Bi) and

∏
i Λn+1(S)(Γ,Bi) respectively. Because the simply-typed

λ-calculus is strongly normalising (see, e.g. [GTL89, Chapter 6]), we know that the terms in any context are
equivalently given by βη-normal form terms Γ ` ti : Bi, which are identical in the nth-order and
(n+ 1)th-order simply-typed λ-calculi.

We are now ready to present the main definition. In the following we take n > 0; 0th-order algebraic
theories are defined in Section 4.8.

Definition 4.5.11. An S-sorted nth-order algebraic theory is a strict cartesian identity-on-objects functor
L : Ln(S) → L strictly preserving n-tetrable objects. Given nth-order algebraic theories L : Ln(S) → L
and L′ : Ln(S)→ L ′, a map from L to L′ is a functor F : L → L ′ such that FL = L′. nth-order algebraic
theories and their maps form a category Lawn(S).

6Note that, while we are technically overloading the meaning of Λn(S) here, the notation is consistent with the previous usage in
Section 4.3, given the convention to use the same symbol for a category and its underlying object-set.
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In particular, the category Law1(1) is the classical category of monosorted algebraic theories [Law63];
Law1(S) is the category of S-sorted algebraic theories [Bén68]; and Law2(1) is the category of monosorted
second-order algebraic theories as defined by Fiore and Mahmoud [FM10]. Note that maps of (n+ 1)th-order
algebraic theories are necessarily strict cartesian identity-on-objects functors that strictly preserve n-tetrable
objects.

4.5.1 Equivalence of theories and presentations
To justify our definition of presentation and translation in Definition 4.3.6, we prove that the categories of
nth-order algebraic theories and of presentations for nth-order algebraic theories are equivalent.

Lemma 4.5.12. There is a reflection of categories

Preslitn (S) Lawn(S)
Λ(−)

Π(−)

⊣

Proof. The functor Λ(−) : Preslitn (S) → Lawn(S) is given by the classifying category construction for each
presentation, as in Definition 4.5.7, which is easily seen to be functorial. The functor
Π(−) : Lawn(S)→ Preslitn (S) sends a theory L : Ln(S) → L to the presentation
(
∐

(Γ,B)∈Λn(S)×S) L (Γ,B), π, EL), where the set of equations EL is given by identifying the formal
projections, compositions, and evaluations in L with the corresponding variable projections, substitutions,
and applications in the equational logic; and sends each map F : L → L ′ to the transliteration specified by
the function mapping (Γ, A, t) 7→ (Γ, A, F t). That this preserves the equations in ΠL follows from
functoriality of F .

Consider a presentation Σ ∈ Preslitn (S) and theory L ∈ Lawn(S). A map F : ΛΣ → L is specified
entirely by the action of F on the operators of Σ, as the action on the derived terms is forced by functoriality
and structure-preservation of F ; this then exactly coincides with the data of a transliteration f : Σ→ ΠL. It
follows that Lawn(S)(ΛΣ, L) ∼= Preslitn (S)(Σ,ΠL), which is easily seen to be natural in Σ and L.

For full faithfulness of Π(−), observe that the counit of the adjunction is a natural isomorphism, since
the closure under composition and identities of a theory corresponds to closure under substitution and vari-
able projections in the corresponding presentation. Hence closure under derived operators is idempotent for
presentations induced by theories.

From this, we may deduce the equivalence of presentations and theories, observing that translations (Def-
inition 4.3.8) are the Kleisli morphisms for the monad induced by Lemma 4.5.12.

Corollary 4.5.13. There is an equivalence of categories

Presn(S) ' Lawn(S)

Proof. Translations, the morphisms of Presn(S), may be seen to correspond to Kleisli morphisms for the
monad Π(−)Λ(−) induced by the reflection of Lemma 4.5.12, essentially by definition, so that Presn(S) '
Kl(Π(−)Λ(−)). Since the adjunction Λ(−) a Π(−) is idempotent, it follows that Lawn(S) is equivalent to
both the Kleisli category and Eilenberg–Moore category for the induced monad, and hence to Presn(S).

Remark 4.5.14. As noted, the idempotence of the adjunction in Lemma 4.5.12 implies that Presn(S) is both
(1) the Kleisli category and (2) the Eilenberg–Moore category for the induced monad. This justifies the two
alternate practices in categorical logic of defining theories syntactically either as (1) sets of operators and
equations on the derived terms (as we do in Definition 4.3.6); or (2) sets of terms closed under the deductive
structure of the metatheory (for instance, as in [LS88, §I.10]). The observation that Pres1(S) is the Kleisli
category for a monad on Preslit1 (S) also appears in [VT10, Proposition 5.11].
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4.6 Local strong finite presentability
In this section, we prove that the category Lawn(S) of nth-order algebraic theories is locally strongly finitely
presentable, which will be instrumental in establishing our monad–theory correspondence in Section 4.7.
Locally strongly finitely presentable categories are analogous to the better-known locally finitely presentable
categories, but for which finite products (and sifted colimits), rather than finite limits (and filtered colimits),
are primary [AR01]. By the duality theorem of [ALR03], locally strongly finitely presentable categories are
precisely the categories of models of multisorted algebraic theories and we will frequently make use of this
characterisation.

We recall the definitions of sifted colimits and locally strongly finitely presentable categories.

Definition 4.6.1 ([AR01]). A category C is sifted if colimits of diagrams of shape C commute with finite
products in Set. A category (resp. functor) is sifted-cocomplete (resp. sifted-cocontinuous) if it admits (resp.
preserves) all sifted colimits (i.e. colimits indexed by sifted categories). We denote byよsf

C : C ↪→ Sind(C )
the cocompletion of a small category C under sifted colimits.

We note for future reference that, since the sifted-cocompletion of a category C embeds fully faithfully
into the free cocompletion of C , we have a corresponding Yoneda lemma:

Sind(C )(よsf
CX,P )

∼= Ĉ (よCX,P ) ∼= PX (4.12)

Definition 4.6.2 ([AR01; LR11]). A category is locally strongly finitely presentable if it is equivalent to Sind(C )
for some small cocartesian category C .

Definition 4.6.3 ([AR01]). An object X of a category C is strongly finitely presentable if its co-Yoneda em-
bedding C (X,−) is sifted-cocontinuous. We denote by Csf the full subcategory of C spanned by the strongly
finitely presentable objects.

For every small cocartesian category C , the objects of C are strongly finitely presentable in Sind(C ).
To exhibit Lawn(S) as locally strongly finitely presentable, we shall give an explicit characterisation of

the small cocartesian category that presents Lawn(S).

Proposition 4.6.4. There is an equivalence of categories

Cart(Ln+1(S), Set) ' Lawn(S)

Proof. Up to isomorphism, a cartesian functor F : Ln+1(S) → Set is determined by a set F (BX) for each
B ∈ S andX ∈ Ln(S) and a function Ff : F (BX1

1 )× · · · ×F (BXn
n )→ F (BX) for each morphism f : BX1

1 ×
· · · × BXn

n → BX in Ln+1(S).
We define a cartesian category F as follows. The objects of F are those of Ln(S). The hom-sets are given

by F (X,Y )
def
= F (Y X). Identities are given by 1 ∼= F1

F (λ1X)−−−−−→ F (XX). Composition is given by internal
composition, F (Y X) × F (ZY ) ∼= F (Y X × ZY ) F (◦)−−−→ F (ZX). This forms a category, with unitality and
associativity of composition following from that of internal composition. For every morphism f : X → Y in
Ln(S), we have a corresponding element 1 ∼= F1

λf−−→ F (Y X), hence a morphismX → Y in F . This defines
an identity-on-objects functor Ln(S) → F . It remains to show that F is cartesian and has the required
exponentiable objects (given by those of Ln(S)), as this structure will trivially be preserved by the identity-
on-objects functor. For the former property, observe thatF ((Y1×Y2)X) ∼= F (Y X1 ×Y X2 ) ∼= F (Y X1 )×F (Y X2 )
natural inX,Y1, Y2 ∈ Ln(S); while for the latterF (Y X1×X2) ∼= F ((Y X2)X1) natural inX1, X2, Y ∈ Ln(S).
Thus the induced identity-on-objects functor Ln(S)→ F is an nth-order algebraic theory.

Conversely, every nth-order algebraic theory L : Ln(S)→ L defines a cartesian functor F : Ln+1(S)→
Set by defining F (Y X)

def
= dL e(1, Y X), where d−e : Lawn(S) ' Presn ↪→ Presn+1 ' Lawn+1(S) is given

by interpreting L as an (n+1)th-order algebraic theory (cf. Corollary 4.6.10). It is straightforward to see these
processes are mutually inverse up to isomorphism, and are functorial in the obvious manner.
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In fact, this characterisation is sufficient to establish that Ln+1(S)
op presents Lawn(S) as locally strongly

finitely presentable, as shown by the following.

Theorem 4.6.5. There are equivalences of categories

Lawn(S) ' Cart(Ln+1(S), Set) ' Sind(Ln+1(S)
op)

establishing Lawn(S) to be locally strongly finitely presentable.

Proof. The first equivalence is Proposition 4.6.4. The second equivalence follows by [AR01, Corollary 2.8],
since Ln+1(S) is small and cartesian.

Remark 4.6.6. Theorem 4.6.5 may be derived, in the special case where n = 1 and S = 1, from [Mah11,
Proposition 7.8] by specialising to the trivial second-order presentation and observing that abstract clones are
equivalently algebraic theories. However, the observation that this result gives a precise characterisation of
the strongly finitely presentable objects of Law1(1) does not appear ibid.

Remark 4.6.7. Theorem 4.6.5, for n = ω and S = 1, is an analogue (in the simply-typed, extensional setting,
rather than the unityped, intensional setting) of what Hyland [Hyl17, Theorem 4.11] calls the Fundamental
Theorem of the λ-Calculus. There, Hyland’s λ-theories play the role of ω-order algebraic theories, Hyland’s Λ
the role of Lω(S), and Hyland’s Λ-algebras the role of cartesian functors Lω(S)→ Set (which are identified
with the term algebras for Lω(S) in Theorem 4.9.11).

Remark 4.6.8. Theorem 4.6.5, for n = 1, bears resemblance to the main result of [Uem20], in which it is
proven that the category of generalised algebraic theories, a dependently-sorted analogue of algebraic the-
ories, is the cocompletion under filtered colimits of the free finitely complete category on an exponentiable
morphism. Uemura’s result may be seen as a dependently-sorted analogue of our result.

Corollary 4.6.9. Lawn(S) is locally finitely presentable, cocomplete, and complete.

Proof. It follows from the duality theorem for varieties [ALR03] that every locally strongly finitely presentable
category is locally finitely presentable. Every locally (strongly) finitely presentable category is cocomplete and
complete.

From the perspective of the equational logic, cocompleteness of the category ofnth-order algebraic theories
amounts to the ability to combine presentations by conjoining operators and equations. Completeness is more
subtle, as there is usually not a convenient syntactic description of a limit of higher-order algebraic theories.

It follows from Theorem 4.6.5 that there is an embedding

Jn : Ln+1(S)
op ↪→ Sind(Ln+1(S)

op) ' Lawn(S)

It is helpful to spend a little time to understand this functor concretely. Intuitively, each objectX ∈ Ln+1(S)
induces an nth-order algebraic theory by freely extending the theory of equality Ln(S) by a constant of type
X . For instance, the object (U × U � U) × ((U � U) � U) of L3({U}) induces an equation-free second-
order algebraic theory with two operators, corresponding to the abstraction and application operators of the
unityped λ-calculus as in Example 4.4.1. Observe that the nth-order algebraic theories induced in this way
will have a finite number of operators, since Ln+1(S) has only finite products, and will have no nontrivial
equations. This is to be expected, since Ln+1(S)

op is a category of strongly finitely presentable objects in
Lawn(S), which are conceptually understood in general to correspond to finite free objects.

The following corollary of Theorem 4.6.5 establishes a strong relationship between the categories of nth-
order and (n+ 1)th-order algebraic theories that will be seen to play an important role in the monad–theory
correspondence.

Corollary 4.6.10. There is a coreflection of categories

Lawn(S) Lawn+1(S)
⌈−⌉

⌊−⌋

⊣
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Proof. The inclusion functor In+1 : Ln+1(S) ↪→ Ln+2(S) induces an algebraic functor
Lawn+1(S) → Lawn(S). Since algebraic functors are precisely the sifted-cocontinuous right adjoints, this
establishes an adjunction between Lawn(S) and Lawn+1(S). Concretely, the left adjoint is given by
Sind(In+1

op), and the right adjoint by Cart(In+1, Set). Since the Yoneda embedding is fully faithful, Sind
preserves fully faithful functors, exhibiting the adjunction as a coreflection.

As a notational convenience, for an nth-order algebraic theory L : Ln(S)→ L , we shall often denote by
dL e the codomain of the functor dLe, and by IL : L → dL e the fully faithful inclusion.

Syntactically, the left adjoint of the coreflection can be viewed as interpreting an nth-order presentation
as an (n + 1)th-order presentation that has no (n + 1)th-order operations or equations. Explicitly, using
the equivalence between theories and presentations, it is given by Lawn(S) ' Presn(S) ↪→ Presn+1(S) '
Lawn+1(S). The right adjoint can be viewed as discarding all induced (n+1)th-order operators: categorically,
this means sending a theoryL : Ln+1(S)→ L to the identity-on-objects part of the (identity-on-objects, fully
faithful)-factorisation of Ln(S)

In
↪−→ Ln+1(S)

L−→ L . (The first-order algebraic theory associated to a second-
order algebraic theory L via b−c was called the underlying algebraic theory of L in [FM10]. Cf. the truncation
of an algebraic theory discussed in [Hyl14b, §3.3].)

The same reasoning establishes a chain of coreflections,

Law0(S) · · · Lawn(S) Lawn+1(S) · · · Lawω(S)

permitting us freely extend or restrict a higher-order theory to any order.

Proposition 4.6.11. Lawω(S) is the limit of the ω-chain

Law0(S) · · · Lawn(S) Lawn+1(S) · · ·

Proof. Observe that Lω(S) is the colimit of the ω-cochain L0(S)
i0
↪−→ L1(S)

i1
↪−→ · · · . The result then follows,

since Cart(−, Set) sends colimits in Cart to limits in Cat.

Remark 4.6.12. Note, however, that Lawω(S) is not the colimit of the coreflections: the colimit is instead
given by the subcategory of Lawω(S) for which, for each object L, there exists a kL ∈ N such that L is a
kL

th–order algebraic theory, meaning each theory therein has bounded order.

We take the opportunity to note briefly that the coreflection facilitates a concrete description of the equiv-
alence functor Lawn(S)→ Sind(Ln+1(S)

op), which will be useful later.

Lemma 4.6.13. The functor Lawn(S)→ Sind(Ln+1(S)
op) induced by the equivalence ofTheorem 4.6.5 is given

concretely by the co-Yoneda embedding (L : Ln(S)→ L ) 7→ dL e(1, dLe−).

Proof. For any pair of objectsX,Y ∈ L (withX not necessarily exponentiable), wemay form the exponential
Y X in dL e. Therefore, the hom-set L (X,Y ) is equivalently given by dL e(1, Y X). The result then follows
directly from the definition of the functor Lawn(S)→ Sind(Ln+1(S)

op) in Proposition 4.6.4.

4.7 A monad–theory correspondence
With local strong finite presentability established, we are ready to prove the existence of a monad–theory
correspondence for higher-order algebraic theories. However, we shall not do so directly: instead, higher-
order algebraic theories will first be shown to correspond to relative monads. This aligns with the philosophy
of Chapter 3 that theories, qua structured identity-on-objects functors, are precisely relative monads. In well-
behaved situations, relative monads are equivalent to monads preserving certain colimits, and in this way we
achieve the monad–theory correspondence. In our setting, we consider monads relative to the inclusion of a
small cocartesian category into its sifted-cocompletion, so that the relative monad may be viewed as taking
“small” inputs (namely, the strongly finitely presentable objects), to “possible large” outputs. Syntactically,
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we restrict to such relative monads because the operators of a higher-order algebraic theory are finitary, i.e.
have only a finite number of free variables, which is reflected categorically by the consideration only of finite
products, rather than κ-ary or small products.

The central thesis of Chapter 3 is that monad–theory correspondences arise generally as correspondences
between Kleisli adjunctions, relative monads, and monads. As a consequence of Theorem 3.1.14, we can im-
mediately deduce that the strict cartesian identity-on-objects functors from Ln(S) (i.e. nth-order algebraic
theories without the condition imposing preservation of exponentiable objects) are equivalently given by
monads relative to the inclusion Jn : Ln+1(S)

op ↪→ Sind(Ln+1(S)
op) ' Lawn(S), with each strict cartesian

identity-on-objects functor Ln(S)→ L being the opposite of the Kleisli inclusion for the corresponding rela-
tive monad. To obtain a correspondence for higher-order algebraic theories, we must restrict this equivalence
of categories to the functors preserving the appropriate exponentiable objects. To that end, we introduce the
following definitions.

Definition 4.7.1. Let I : C ↪→ D be a coexponentiable subcategory and let J : D → E be a cocartesian
functor. A J-relative monad (T, η) is called +-linear if the canonical strength
[η, T ] : JI(−) + T (−)→ T (I−+ (−)) is invertible; a monad (T, η) on E is called +-linear if the canonical
strength [η, T ] : JI(−) + T (−)→ T (JI−+ (−)) is invertible. We denote by RMnd+(J) ↪→ RMnd(J) the
full subcategory spanned by +-linear relative monads; and by Mnd+(E ) ↪→ Mnd(E ) the full subcategory
spanned by +-linear monads.

Note that our notion of strength for a relative monad is more general than that of [Uus10], and might
naturally be called an I-relative strength for a J-relative monad, where the notion ibid. is recovered by taking
I = 1D ; and similarly for monads. Our terminology is inspired by [BR19], where linear monads are defined
to be those monads with invertible strengths.

The definition of +-linearity is motivated by the following result.

Lemma 4.7.2. Let I : C → D be a coexponentiable subcategory and let J : D → E be a dense cocartesian
functor that preserves coexponentiable objects in the image of I . The Kleisli embedding for a J-relative monad T
preserves the coexponentiable objects in D if and only if T is +-linear.

Proof. ForX a coexponentiable object in a cocartesian category, denote by (−)X a X+(−) the coexponential.
We have the following chain of isomorphisms, natural in X,Z ∈ D and Y ∈ C ,

Kl(T )(XIY , Z) = E (J(XIY ), TZ)
∼= E ((JX)JIY , TZ)
∼= E (JX, JIY + TZ)
∼= E (JX, T (IY + Z)) (∗)
= Kl(T )(JX, IY + Z)

where (∗) follows if and only if the canonical +-strength for T is invertible.

To apply this result in the context of higher-order algebraic theories, we require the following.

Lemma 4.7.3. Jn : Ln+1(S)
op ↪→ Lawn(S) preserves coexponentials.

Proof. We have the following, natural in X,Y ∈ Ln(S) and L ∈ Lawn(S).

Lawn(S)(Jn(Y X), L) ∼= dL e(1, dLe(Y X))

∼= dL e(1, dLeY ⌈L⌉X)
∼= dL e(dLeX, dLeY )
∼= dL e(1, (dJnXe+ dLe)Y )
∼= dL e(1, dJnX + Le(Y ))
∼= Lawn(S)(JnY, JnX + L)
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Consequently, we have the following correspondence between higher-order algebraic theories and
+-linear relative monads, where the coexponentiable subcategory is given by Inop : Ln(S)op ↪→ Ln+1(S)

op

for n > 0, and by 0: 1op ↪→ L1(S)
op for n = 0.

Theorem 4.7.4. Let J =よsf
Ln+1(S)op

: Ln+1(S)
op ↪→ Sind(Ln+1(S)

op). There is an isomorphism of categories

Lawn+1(S) ∼= RMnd+(J)

Proof. By Lemma 4.7.2, a Kleisli embedding for a relative monad T (i.e. a J-theory) preserves coexponentiable
objects if and only if T is +-linear, since J is dense and preserves coexponentials (Lemma 4.7.3). (n + 1)th-
order algebraic theories are precisely the duals of J-theories satisfying this preservation condition, and, by
composing the equivalence of Theorem 4.6.5, the isomorphism of Theorem 3.1.14 thus restricts as stated.

The instantiation of Theorem 4.7.4 for n = 0 and S = 1 establishes that monosorted first-order algebraic
theories are in bijection with (FinSet ↪→ Set)-relative monads. This observation is typically regarded as folk-
lore, though it follows from the developments in [FPT99] and [ACU15]; a direct proof appears in [Voe16].
Using the results of Chapter 3, this immediately implies a monad correspondence, since J exhibits a cocom-
pletion under a class of shapes (namely, the sifted categories).

Definition 4.7.5. Denote by Mndsf(C ) the category of sifted-cocontinuous (also called strongly
finitary [LR11]) monads on a sifted-cocomplete category C , i.e. those monads whose underlying
endofunctors preserve sifted colimits.

Theorem 4.7.6. There is an equivalence of categories

Lawn+1(S) ' Mnd+,sf(Lawn(S))

Proof. Follows directly from Theorem 4.7.4 and Theorem 3.2.6, taking Φ = Sind.

Remark 4.7.7. When n = 1, the+-linearity condition trivialises, and we recover the classical monad–theory
correspondence: Law1(S) ' Mndsf(SetS).

This monad–theory correspondence makes precise the sense in which (n + 1)th-order binding structure
is algebraic over nth-order binding structure: let us remark that this phenomenon is not entirely surprising,
since the arities of (n+1)th-order algebraic theories are taken from the objects of nth-order algebraic theories,
which suggests a relationship along these lines.

4.7.1 Simple slices
The advantage of the abstract approach of the previous section to the monad–theory correspondence is its
simplicity. However, it is less helpful in gaining an intuition for the relationship between higher-order alge-
braic theories and monads, since we obtain the monads on Lawn(S) from monads on Sind(Ln+1(S)

op) by
transferring them across the equivalence of Theorem 4.6.5. We shall now give a more concrete understanding
of the correspondence in terms of the simple slice construction.

Definition 4.7.8 ([Jac99, Definition 1.3.1]). Let C be a cartesian category and let X ∈ C be an object. The
simple slice over X , denoted C //X , is the Kleisli category of the comonad (−)×X .

Simple slices have proven useful in categorical treatments of simple type theory, where they are occasional
called polynomial categories [LS88, §I.5]. For C a cartesian category viewed as the classifying category for a
simple type theory, the simple slice C //X corresponds syntactically to extending each context of C by a
variable of type X ; equivalently, to adding a new constant of type X to the type theory. The following
proposition makes this intuition precise.

Proposition 4.7.9 ([LS88, Proposition I.7.1]). Let C be a cartesian category and let X ∈ C be an object. The
category C //X is the free extension of C by a single morphism 1→ X .
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Given a higher-order algebraic theory L : Ln(S) → L , every simple slice over L inherits the theory
structure. In this way, the simple slices over a higher-order algebraic theory may be assembled into a functor.

Lemma 4.7.10. Let L : Ln+1(S) → L be an (n + 1)th-order algebraic theory. The simple slices of L form a
functor L//(−) : L op → L/Lawn+1(S).

Proof. For each object X ∈ L op, the simple slice category L //X inherits an identity-on-objects functor
L//X : Ln+1(S) → L → L //X by composing L with the inclusion L → L //X given by the universal
property of Proposition 4.7.9. This functor strictly preserves finite products and exponentiable objects [LS88,
Proposition I.7.1], and is hence an (n+ 1)th-order algebraic theory, which is equipped with a canonical inclu-
sion L → L //X . This process is easily seen to be contravariantly functorial in X .

The relationship between simple slices and higher-order algebraic theories as concerns the monad–theory
correspondence is given as follows. Recall that the nerve of a functor F : C → D with small domain is given
by the restricted Yoneda embedding NF : D → Ĉ = D(F−,−). From the development in Chapter 3, the
relative monad corresponding to an (n + 1)th-order algebraic theory L : Ln+1(S) → L is induced by the
following relative adjunction.

L op

Ln+1(S)
op Sind(Ln+1(S)

op)

Lop NLop

よsf
Ln+1(S)op

⊣

We may use the simple slice construction, along with the extension–restriction adjunction d−e a b−c of
Corollary 4.6.10, to give a concrete interpretation of this relative adjunction. Denote by U : L/Lawn+1(S)→
Lawn+1(S) the forgetful functor from the coslice category.

Lemma 4.7.11. LetL : Ln+1(S)→ L be an (n+1)th-order algebraic theory. The following diagram commutes
up to natural isomorphism:

L op

dL eop

Sind(Ln+2(S)
op) Lawn+1(S)≃

U(L//(−))IL
op

N⌈L⌉op

Proof. For all X ∈ L , we have the following:

(') ◦ U(L//X) ∼= dL //Xe(1, dLe−) (Lemma 4.6.13)
= dL e(1×X, dLe−) (Definition 4.7.8)
∼= dL e(X, dLe−)
= dL eop(dLeop−, X)

= (N⌈L⌉op ◦ IL op)(X)

which is functorial in X .

We shall also need the following, which relates the simple slice construction to coproducts of higher-order
algebraic theories.
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Lemma 4.7.12. LetL : Ln+1(S)→ L be an (n+1)th-order algebraic theory. The following diagram commutes
up to natural isomorphism.

Ln+1(S)
op Lawn(S)

Lawn+1(S)

L op L/Lawn+1(S)
L//(−)

Lop

Jn

⌈−⌉

L+(−)

U(1Ln+1(S)//(−))

Proof. Commutativity of the triangle follows from Proposition 4.7.9 and the explicit description of Jn given
in Section 4.6. Commutativity of the square follows again from Proposition 4.7.9 and the definition of colimits
of categories, as both functors freely adjoint a constant to L.

Using this relationship, we can deduce that the simple slice construction is fully faithful, which is the final
ingredient necessary to give the promised concrete understanding.

Lemma 4.7.13. Let L : Ln+1(S) → L be an (n + 1)th-order algebraic theory. The simple slice functor
L//(−) : L op → L/Lawn+1(S) is fully faithful.

Proof. For all X,Y ∈ Ln+1(S), we have:

L/Lawn+1(S)(L//X,L//Y ) ∼= L/Lawn+1(S)(L+ dJnXe, L//Y ) (Lemma 4.7.12)
∼= Lawn+1(S)(dJnXe, U(L//Y )) (L+ (−) a U )
∼= Lawn+1(S)(Jn+1X,U(L//Y ))

∼= Sind(Ln+2(S)
op)(よsf

X, (N⌈L⌉op ◦ IL op)Y ) (Lemma 4.7.11)
∼= (N⌈L⌉op ◦ IL op)Y (X) (Yoneda lemma)
∼= NL

opY (X) (IL is fully faithful)
= L op(X,Y )

We may now give a more conceptual characterisation of the monad induced by a higher-order algebraic
theory. While it is known classically that free term algebras for first-order algebraic theories (equivalently,
free algebras for finitary monads on Set) may be alternatively described by first-order algebraic theories with
adjoined constants (cf. [Law63, Proposition V.1.1]), by making use of the coreflections between higher-order
algebraic theories, we may present this result in a particularly elegant fashion.

Theorem 4.7.14. Let L : Ln+1(S)→ L be an (n+ 1)th-order algebraic theory. The underlying functor of the
relative monad TL corresponding to L is given by bU(L+ dJn(−)e)c. Consequently, the monad T̂L on Lawn(S)
corresponding to L is induced by the following adjunction:

Lawn(S) Lawn+1(S) L/Lawn+1(S)
⌈−⌉ L+(−)

⌊−⌋ U

⊣ ⊣ (4.13)

Suppressing the forgetful functor U , the underlying endofunctor of T̂L is hence given by

bL+ d−ec (4.14)

Proof. Observe that the monad induced by the adjunction (4.13) is sifted-cocontinuous, as left adjoints
preserve colimits; U preserves sifted colimits because they are in particular connected colimits, which are
preserved by the forgetful functor from a coslice category; and b−c preserves sifted colimits because it is
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algebraic. Therefore, to show that the adjunction induces T̂L, it suffices to show that precomposing
Jn : Ln+1(S)

op ↪→ Lawn(S) induces the relative monad TL. To do so, consider the functor
L//(−) : L op → L/Lawn+1(S),

L op L/Lawn+1(S)

Ln+1(S)
op

Lop

L//(−)

L+⌈Jn(−)⌉

which makes the diagram above commute up to natural isomorphism by Lemma 4.7.12. Since L//(−) is
fully faithful by Lemma 4.7.13, Lop is exhibited as the Kleisli inclusion for the relative monad induced by
precomposing (4.13) by Jn, from which the conclusion follows, since TL is induced by the Kleisli relative
adjunction Lop

よsfa NLop .

In the first-order setting, wemay understand this characterisation conceptually as meaning that themonad
induced by an algebraic theory L takes a set of constants (which are the terms of a 0th-order algebraic theory,
as will be expounded in Section 4.8) and closes them under the operations of L. More generally, the monad
induced by an (n + 1)th-order algebraic theory L takes an nth-order algebraic theory L′ and adjoins the
operators of L′ to those of L to produce a new (n + 1)th-order algebraic theory L + dL′e, and then extracts
the closed terms (equivalently the open terms of the underlying nth-order algebraic theory) to produce a new
nth-order algebraic theory bL+ dL′ec.

In this light, higher-order algebraic theories may be viewed as (particularly well-behaved) monad trans-
formers [LHJ95]. For instance, for a second-order algebraic theory L, the underlying endofunctor of the
induced monad on Law1(S) corresponds to a functor that, informally, takes a monad and freely adds the
structure of L by taking its coproduct with L:

Mndsf(SetS) ' Law1(S)
⌊L+⌈−⌉⌋−−−−−−→ Law1(S) ' Mndsf(SetS)

The form of the monad in Theorem 4.7.14 facilitates its expression as a coend, which reduces to the well-
known coend characterisation in the first-order setting (cf. [HP07, Proposition 4.1]).

Corollary 4.7.15. Let L : Ln+1(S) → L be an (n + 1)th-order algebraic theory. The underlying endofunctor
of the monad TL on Lawn(S) induced by L is given by the coend

TL(L
′)(X,Y ) ∼=

∫ Γ∈Ln+1(S)

dL ′e(1,Γ)×L (Γ, Y X) (4.15)

Proof. First, observe that

TLΓ(−,−) ∼= bL//Γc(−,−) (Theorem 4.7.14)
∼= bL c(Γ× (−),−) (Lemma 4.7.10)
∼= L (Γ× (−),−) (∗)
∼= L (Γ, (−)(−)

)

where (∗) follows since bL c is given by the full image of L on Ln(S).
The monad associated to the relative monad TL is given by extending the underlying functor TL along

J =よsf
Ln+1(S)op

. Since Lawn(S) is cocomplete, we may evaluate J ▷ TL as a coend (see, e.g. [Kel82, (4.25)]).
Using the Yoneda lemma together with Lemma 4.6.13, we have:

(よsf
Ln+1(S)op

▷ TL)(L
′) ∼=

∫ Γ∈Ln+1(S)

Sind(Ln+1(S)
op)(よsf

Γ, dL ′e(1, dL′e−))× TLΓ(−,−)

∼=
∫ Γ∈Ln+1(S)

dL ′e(1, dL′eΓ)×L (Γ, (−)(−)
)
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Monads for binding signatures Observe that to each S-sorted second-order algebraic theory we may as-
sociate a monad on SetS by b−c : Law2(S) → Law1(S) ' Mndsf(SetS). Conceptually, the induced monad
describes the closed term structure of the second-order theory, which is equivalent to the open term struc-
ture of the underlying first-order theory; the second-order structure is therefore forgotten. Several existing
approaches to generating monads from signatures of variable-binding operators may be viewed as variations
on this theme. For instance, the motivation of [Ahr+19] is to provide a monadic approach to the work of
Fiore and Hur [FH10] (in the monosorted setting). However, there the authors only consider monads on Set
and thus lose the higher-order structure. Our work may therefore be seen to provide a more principled and
complete realisation of this intention.

Similarly, Matthes and Uustalu [MU04] consider binding signatures as pointed endofunctors on endo-
functor categories [C ,C ], which induce monads on C (for instance, taking C = Set to recover monosorted
second-order signatures).

4.8 Zeroth-order algebraic theories
We have established that, for n > 1, the category of S-sorted (n + 1)th-order algebraic theories is given by
taking +-linear, sifted-cocontinuous monads on the category of S-sorted nth-order algebraic theories. It is
well known that the category of S-sorted first-order algebraic theories is given by taking sifted-cocontinuous
monads on the category of S-indexed sets (Corollary 3.2.7). As the+-linearity condition is by definition trivial
for n = 1, it is natural to ask to what extent the category of S-indexed sets may be viewed as the category of
S-sorted 0th-order algebraic theories. This would eliminate the seemingly arbitrary base case for an inductive
definition of Lawn(S) in terms of +-linear sifted-cocontinuous monads. The purpose of this section is to
demonstrate that it is entirely natural to take S-indexed sets as the definition of S-sorted 0th-order algebraic
theories, which, intuitively, represent theories of constants.

Definition 4.8.1. L0(S) is the free nullary completion of S, giving by freely adjoining a terminal object to the
discrete category S.

Definition 4.8.2. An S-sorted 0th-order algebraic theory is an identity-on-objects functor L : L0(S) → L
strictly preserving the terminal object, such that every morphism in L is constant (that is, factors through the
terminal object). Given 0th-order algebraic theories L : L0(S) → L and L′ : L0(S) → L ′, a map from L to
L′ is a functor F : L → L ′ such that FL = L′. 0th-order algebraic theories and their maps form a category
Law0(S).

This requirement that each morphism in a 0th-order algebraic theory be constant is perhaps surprising.
This is necessary because the operations of a 0th-order algebraic theory must have trivial domain. We may
view this definition from the operadic perspective, where this restriction is more naturally expressed.

Remark 4.8.3. 0th-order algebraic theories are precisely T -multicategories (cf. [Lei04]), for T the terminal
monad on Set. The object-set of the multicategory is given by the set of sorts S.

It is trivial to define presentations for 0th-order algebraic theories; we omit the unilluminating details.
Definition 4.8.2 is justified by the following proposition.

Proposition 4.8.4. There is an isomorphism of categories:

Law0(S) ∼= SetS

Proof. Consider the co-Yoneda embedding of the terminal object in any 0th-order algebraic theory.

Note that this definition is consistent with the results throughout the chapter, in which we set n = 0: for
instance, there is an equivalence Law0(S) ' Sind(L1(S)

op) ' Cart(L1(S), Set). This result allows us to
exhibit an inductive construction of the category of nth-order algebraic theories from the category of 0th-order
algebraic theories.
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Corollary 4.8.5. There is an equivalence of categories

Lawn(S) ' Mnd+,sfn(Law0(S))

Conceptually, we may view the process of taking sifted-cocontinuous +-linear monads as parameterising
the objects of a category, viewed as theories, by finitary contexts. Iterating this construction increases the
order of parameterisation, thus moving from first-order algebraic structure, to second-order, and so on. One
might suppose that a similar process is possible for other notions of theory: for instance, that higher-order lin-
ear structure might be given by iteratively taking analytic monads [Joy86; Web04]. We leave the investigation
of such matters to future work.

Remark 4.8.6. The reader familiar with 2-category theory should note that, since in this chapter Mnd(−)
denotes the category of monads on a category, rather than the 2-category of monads in a 2-category as in
[Str72a], the objects of Mnd(Mnd(C )), for some category C , are not distributive laws as in [Str72a, §6] or
[Che11], but rather well-behaved monad transformers.

4.9 Models and algebras
Up to this point, we have entirely omitted the consideration of models of higher-order algebraic theories.
There is good reason for doing so, as the situation is more subtle in the higher-order setting than the first-
order setting. In this final section, we discuss models of higher-order algebraic theories and their relationship
to algebras for the corresponding monads.

We may model the structure of a first-order algebraic theory L : L1(S)→ L in an arbitrary cartesian cat-
egory C by considering cartesian functors L → C ; natural transformations, which automatically commute
with the cartesian structure, then describe homomorphisms between models. The algebras for the monad cor-
responding to the first-order algebraic theory L are equivalent to models of L in Set: in this sense, models
subsume algebras.

Moving to higher-order algebraic theories, the situation is more subtle. While the obvious definition of
model (namely a cartesian functor preserving the appropriate exponentiable objects) is perfectly satisfactory,
the appropriate definition of homomorphism in the presence of higher-order structure is unclear. Furthermore,
while the algebras for a monad TL are, in particular, models for L when n = 1, the same is not true for n > 1.
This motivates us to distinguish between models, which are structure-preserving functors, and term algebras,
which are structures corresponding to the algebras of the induced monad. We argue that this distinction gives
conceptual justification for the seeming mismatch in the first-order setting between the ability to take models
for a theory in any cartesian category, and the ability to consider algebras for a monad only in the category
of sets.

Finally, we introduce a strict notion of model, given by coslices in Lawn(S), and show that there is a
strong relationship between strict models and term algebras for a theory.

4.9.1 Models
Following Lawvere’s programme of functorial semantics [Law63], we expect the correct notion of model to
be given by a structure-preserving functor into a category with suitable structure.

Definition 4.9.1. Let L : Ln+1(S) → L be an (n + 1)th-order algebraic theory and let C be a cartesian
category. A model of L in C is a cartesian functor L → C that preserves n-tetrable objects.7

Example 4.9.2. Models of the unityped λ-calculus (Example 4.4.1) (with U-η) in a cartesian category C are
equivalently (extensional) reflexive objects in C , i.e. exponentiable objects U equipped with an isomorphism
U ∼= UU [Sco80]. Note that the only reflexive object in Set is the terminal object: preservation of exponentials
is typically a strong requirement.

7We are implicitly assuming that C has enough exponentiable objects.
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Example 4.9.3. A model of the simply-typed λ-calculus with base types S (Example 4.4.2) in a cartesian-
closed category C is equivalently an interpretation of the base types as objects of C .

There are difficulties in defining homomorphisms for higher-order theories. For instance, consider the
monosorted second-order algebraic theory Labs : L2({X}) → Labs generated by the second-order operator
abs : XX → X . Suppose we have models F,G : Labs → C , for some cartesian-closed category C . General-
ising from the first-order setting, we might hope that a homomorphism m : F → G is given by a morphism
mX : FX → GX for the generating objectX ∈ L2({X}), along with a condition requiring F (abs) to cohere
with G(abs) in a suitable sense. However, consider the following diagram.

FXFX GXGX

FX GXmX

F (abs) G(abs)

?

In general, there does not exist a morphism FXFX → GXGX . Fundamentally, this is a problem with con-
travariance: a morphism mX : FX → GX defines a morphism (−)mX : (−)GX → (−)FX , which is in the
wrong direction to express the coherence condition. There are various approaches to addressing this problem,
but all have severe shortcomings.

• We could define a homomorphism to be a natural transformation F ⇒ G, as in the first-order set-
ting. This is the approach of Meinke [Mei92]. A natural transformation defines morphisms FXFX →
GXGX , which allows the coherence condition to be expressed. However, the data for a homomorphism
in this case is no longer determined by the action of the homomorphism on the sorts, and is presented
by an infinitude of morphisms, one for each element of Col2(S).

• We could define a homomorphism to be a natural isomorphism F
∼===⇒ G. This is the typical approach

in categorical algebra and logic [BKP89; Cro93; Joh02b]. In contrast to natural transformations, natural
isomorphisms are determined by their action on the sorts. However, this is clearly a restriction of the
notion of homomorphism: in the case n = 1, we do not recover homomorphisms of algebraic structures.

• We could require a homomorphism m : F → G to define morphisms mX : FX → GX and
m◦
X : GX → FX . There is then a canonical morphism (mX)m

◦
X : FXFX → GXGX . This is the

usual approach in the literature on recursive domain equations (cf. [SP82]). Requiring mX to be
inverse to m◦

X recovers the approach via natural isomorphisms. However, it has the same
shortcoming: restricting to n = 1 does not recover the usual notion of homomorphism.

• We could change the coherence condition for a homomorphism: for instance, we could instead require
that the following diagram commute.

FXGX

FXFX GXGX

FX GXmX

F (abs) G(abs)

FX(mX ) (mX)GX

However, unlike in the first-order setting, imposing such a condition for operators is not enough to
impose the condition also for terms. Thus, such a coherence condition requires an infinitude of equa-
tions, one for each morphism of Labs, to be satisfied. Even if we decided this were acceptable, there
are further problems. Readers may notice this condition is reminiscent of the definition of dinatural
transformations [DS70], which are known not to compose in general. Although our direction of compo-
sition is different here (horizontal, rather than vertical), the same problem arises: the composite of two
homomorphisms may no longer be a homomorphism unless very strong conditions are imposed on the
theory or on the models.
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We have been led to conclude that there is likely no fully satisfactory notion of homomorphism of higher-
order structures, by which we mean a definition such that at least the following conditions hold: the action
on the sorts determines the action on all objects; there are a finite number of coherence conditions for each
operator; and when n = 1, we recover the traditional notion of homomorphism. In this light, there is no ap-
propriate category of models for a higher-order algebraic theory in a cartesian-closed category. Consequently,
we restrict our consideration henceforth to a stricter notion of model.

4.9.2 Strict models
Consider anS-sortednth-order algebraic theoryL : Ln(S)→ L . From a syntactic perspective, wemaymodel
L in any other S-sorted nth-order algebraic theory L′ : Ln(S) → L ′ by giving an interpretation of each of
the operations of L by terms in L′, satisfying the equations of L: this is precisely a coslice of L in Lawn(S)
and is, in particular, a model of L in L ′. Homomorphisms are trivial in this setting, because everything must
commute strictly. This motivates the following definition.

Definition 4.9.4. Let L : Ln(S)→ L be an nth-order algebraic theory. The category of strict models for L is
given by the coslice category L/Lawn(S).

The category of strict models is well-behaved. To prove this, we prove a more general result. The analogue
for locally presentable categories appears as [AR94, Proposition 1.57] (cf. [Osm21, Theorem 2.12]), but there
does not appear to be a prior reference for the result in the context of locally strongly finitely presentable
categories.

Theorem 4.9.5. Let C be a locally strongly finitely presentable category and let X ∈ C . The coslice category
X/C is also locally strongly finitely presentable.

Proof. For the purpose of this proof, a term algebra for a first-order algebraic theory is amodel in the traditional
sense, i.e. a cartesian functor into Set; a more detailed discussion will take place in Section 4.9.3. By the duality
theorem for varieties [ALR03,Theorem 4.1], C is equivalent toL-TmAlg for some first-order algebraic theory
L : L1(S) → L such that L ' Csf

op, so that X is equivalently given by some term algebra A ∈ L-TmAlg.
Every term algebra is the quotient of some free algebra: that is, A specifies a set A(B) of B-sorted constants
for each B ∈ S, with the action on other objects being fixed. The action of A on morphisms identifies terms
in L +

∑
B∈SdA(B)e, which is the free term algebra for L on

∑
B∈S A(B). Since Law1(S) has coequalisers,

this defines a new S-sorted first-order algebraic theory, which we call LA. The action of coslices under A
specifies only how the constants of A are mapped into constants of other algebras, with this being preserved
by the homomorphisms. This is precisely the data of a term algebra for LA. Therefore X/C ' LA-TmAlg
and, since LA-TmAlg is locally strongly finitely presentable, so is X/C .

Corollary 4.9.6. LetL : Ln(S)→ L be annth-order algebraic theory. The category of strict modelsL/Lawn(S)
is locally strongly finitely presentable, hence cocomplete and complete.

Intuitively, the algebraic theory presenting L/Lawn(S) is the extension of Ln+1(S) by the operators and
equations of L. From this result, we may deduce an analogue for strict models of the theorem that algebraic
functors have left adjoints. Note that the classical theorem is given for models with a fixed codomain (namely,
Set), whereas we allow the codomain to vary.

Proposition 4.9.7. Let F : L → L′ be a map of S-sorted nth-order algebraic theories. The functor
L′/Lawn(S)→ L/Lawn(S) induced by precomposition by F has a left adjoint (in fact, it is algebraic).

Proof. Since Lawn(S) has finite colimits by Corollary 4.6.9, the left adjoint is given by the pushout functor
F + (−) : L/Lawn(S) → L′/Lawn(S); this follows directly by the universal property of pushouts. (For
readers acquainted with the categorical semantics of dependent type theories, we note the dual statement is
more familiar in that setting.)

For the stronger statement, observe that F : L → L′ induces a map of (n + 1)th-order algebraic theo-
ries (L/Lawn(S))sf → (L′/Lawn(S))sf. The induced algebraic functor is given by the functor induced by
precomposition by F , from which the result follows.
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4.9.3 Term algebras
While strict models give a reasonable interpretation of model for a theory L, it is unclear how they relate to
the algebras for the induced monad TL. Ideally, we should hope for some relationship between the two. To
shed light on this situation, we introduce the notion of term algebra.

For a first-order algebraic theory L : L1(S) → L , the terms in the empty context form a model
L (1,−) : L → Set. For higher-order theories, this is no longer the case, since L (1,−) does not preserve
exponentials. However, the structure formed by the closed terms of a theory is nevertheless important, and
so we define a separate notion, that of term algebra, to capture it: terms in the empty context of a theory
form the prototypical example.

Term algebras intuitively describe the substitution structure of a theory. Before giving the definition, we
shall consider the unityped λ-calculus (Example 4.4.1) as an exemplar. The closed terms of the theory
Lλ : L2({U}) → Lλ are given by the hom-sets Lλ(1,UUn

) ∼= Lamn, where Lamn is the set of open
unityped λ-calculus terms with at most n ∈ N free variables, up to βη-equivalence. The sets Lamn are
equipped with canonical substitution structure, and so we may assemble them into a category LLam with
objects Un ∈ L1({U}) and hom-sets LLam(Un,Um) = Lamn

m, where identities and composition are given
by the variables and substitution respectively. This construction forms a first-order algebraic theory
LLam : L1({U})→ LLam : in fact, it is precisely the first-order algebraic theory bLλc. Furthermore, the sets
are equipped with interpretations of the λ-abstraction and application operators presented by Lλ, of the
following form.

JabsK : Lamn+1 → Lamn JappK : Lamn × Lamn → Lamn (n ∈ N)

The first-order algebraic theory LLam induces a functor

L2(S)
⌈LLam⌉−−−−→ dLLame

⌈LLam⌉(1,−)−−−−−−−−→ Set

The functions JabsK and JappK provide exactly the structure required to extend this functor to a functor
Lλ → Set. In general, the closed terms for an (n + 1)th-order algebraic theory L : Ln+1(S) → L form an
nth-order algebraic theory L′ = bLc, with L ′(X,Y ) = L (1, Y X), and the induced functor
dL ′e(1, dL′e(−)) : Ln+1(S) → Set extends to a functor L → Set. The extension interprets the operators
of L as functions on closed terms. Term algebras axiomatise this situation, which describes the substitution
structure of the closed terms of a theory.

We follow Linton [Lin69a] in defining the category of term algebras as a pullback.

Definition 4.9.8. Let L : Ln+1(S) → L be an (n+ 1)th-order algebraic theory. The category L-TmAlg of
term algebras for L is defined (up to isomorphism) by the following pullback in CAT:

L-TmAlg [L , Set]

Lawn(S) Cart(Ln+1(S), Set) [Ln+1(S), Set]

[L,Set]

≃

⌟

Example 4.9.9. A term algebra for the second-order algebraic theory Lλ of the unityped λ-calculus (Exam-
ple 4.4.1) consists of a first-order algebraic theory L : L1(S) → L and two families of functions, natural in
X ∈ L ,

JabsKX : L (X × U,U)→ L (X,U) JappKX : L (X,U)×L (X,U)→ L (X,U)

satisfying two equations, corresponding to the β- and η-laws respectively:

JappKX(JabsKX(f), g) = f ◦ 〈1X , g〉 JabsKX(JappKX×U(f ◦ πX , πU)) = f

If we omit the η-law, we recover the λ-theories, or algebraic theories equipped with semi-closed structure,
of [Hyl17, Definition 3.1]. The first-order term algebras for the underlying first-order algebraic theory of
the initial second-order term algebra for Lλ are precisely Λ-algebras [Hyl17, Definition 4.1].
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We may relate term algebras of an (n+ 1)th-order algebraic theory L : Ln+1(S)→ L to algebras for the
induced monad T̂L using the following characterisation theorem for the algebras of a relative monad.

Theorem 4.9.10 (Corollary 5.5.6 and Remark 5.5.7). Let J : A → E be a dense functor with small domain. Let
T : A → E be a J-relativemonad. The Eilenberg–Moore category forT is given by the following (pseudo)pullback
in CAT.

T -Alg [ET op, Set]

E [A op, Set]
NJ

UT [KT
op,Set]

⌟

Specialising this theorem to our setting, we can show that the category of term algebras forL is equivalent
to the category of algebras for both TL and T̂L, and is furthermore given by the category of cartesian functors
L → Set, a situation familiar from classical categorical algebra [Law63].

Theorem 4.9.11. Let L : Ln+1(S) → L be an (n + 1)th-order algebraic theory. Denote by
TL : Ln(S)op → Lawn(S) the induced relative monad, and by T̂L : Lawn(S)→ Lawn(S) the induced monad.
There are equivalences of categories

L-TmAlg ' TL-Alg ' T̂L-Alg ' Cart(L , Set)

Proof. The following forms a pullback in CAT.

Cart(L , Set) [L , Set]

Cart(Ln+1(S), Set) [Ln+1(S), Set]

[L,Set]Cart(L,Set)
⌟

Under the identification of Lop as the Kleisli inclusion for T and Cart(Ln+1(S), Set) ' Sind(Ln+1(S)
op),

this pullback exhibits that of Theorem 4.9.10 up to equivalence, exhibiting TL-Alg ' Cart(L , Set). By
Proposition 3.2.5, we furthermore have TL-Alg ' T̂L-Alg. Finally, the above pullback is equivalent to that
of Definition 4.9.8 by precomposing the equivalence Lawn(S) ' Cart(Ln+1(S), Set), from which the result
follows.

We may now observe that our prototypical example is captured.

Proposition 4.9.12. Let L : Ln(S) → L be an nth-order algebraic theory. Up to the equivalence of Theo-
rem 4.9.11, the hom-functor L (1,−) : L → Set is the initial term algebra.

Proof. Let A : L → Set be a cartesian functor. We have

Cart(L , Set)(L (1,−), A) = [L , Set](L (1,−), A)
∼= A1 (Yoneda lemma)
∼= 1 (A is cartesian)

Hence there is a unique morphism from L (1,−) to any term algebra for L, exhibiting it as initial.

The initial term algebra for an nth-order algebraic theory L : Ln(S)→ L is therefore given by the sets of
closed terms inL. It should be emphasised that it is because terms form a set that Set is distinguished amongst
the cartesian categories as the canonical category in which to take models: categorically, this is because Set
is the base of enrichment.

We may give a syntactic intuition for term algebras viewed as cartesian functors. Let A : L → Set be a
cartesian functor. Each object Γ ∈ L may be considered a context x1 : B1, . . . , xk : Bk in Λn(S), and in this
light one may think of the set A(Γ) as the set of k-tuples of terms that may be substituted for the variables x1
through xk . To provide a substitute for the entire context Γ is to provide a substitute for each variable xi, and
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it is this that necessitates A be cartesian. Functoriality of A ensures that the substitutes are closed under the
operators of L. Consequently, the substitution structure captured by Definition 4.9.8 is equivalently captured
by cartesian functors into Set. In general, the substitutes inA(Γ) are not terms in L; however, Theorem 4.9.13
will give us a way in which a term algebra can always be seen as being given by the sets of closed terms of
some theory, which justifies our nomenclature.

4.9.4 Relation between strict models and term algebras
We may now relate the concepts of strict models and term algebras, which both interpret the structure of a
theory in a certain sense. Our final result of this chapter establishes a strong connection between the two. In
particular, in the ω-order setting, the two notions coincide.

Theorem 4.9.13. Let L : Ln(S) → L be an nth-order algebraic theory. There are algebraic adjunctions of
categories

L-TmAlg L/Lawn(S) dLe-TmAlg⊣ ⊣
factorising the coreflective algebraic adjunction induced by L ↪→ dL e.

Furthermore, when n = ω, these adjunctions exhibit adjoint equivalences

L-TmAlg ' L/Lawω(S) ' dLe-TmAlg

Proof. L/Lawn(S) is locally strongly finitely presentable by Corollary 4.9.6. We can describe its category
of strongly finitely presentable objects explicitly: it is given by adjoining to Ln+1(S) constants 1 → Y X ,
for each X,Y ∈ Ln(S), specified by the set L (X,Y ), and then quotienting by the equations induced by
composition and identities in L . Therefore, there is a fully faithful strict cartesian injective-on-objects functor
L → (L/Lawn(S))sf strictly preserving n-tetrable objects. However, note that (L/Lawn(S))sf is not an
object of Lawn+1(S), because the sorts S are only n-tetrable: the process of adjoining constants takes place
in Cart and thus fails to preserve exponentiable structure. Therefore, there is a strict cartesian identity-on-
objects functor (L/Lawn(S))sf → dLe, which is faithful but not full. Together, these functors provide a
factorisation of the inclusion L ↪→ dL e, and hence induce the required adjunctions.

When n = ω, there is an equivalence L ' dL e since every object is exponentiable in L . Hence
(L/Lawn(S))sf ' dL e, since the structural operations exhibiting exponentiability in dL e are present in L ,
so that (L/Lawn(S))sf is an object of Lawω(S).

In particular, Theorem 4.6.5 is recovered from Theorem 4.9.13 when n = ω by taking L to be the initial
ω-order algebraic theory, i.e. the identity functor on Lω(S).
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Chapter 5

The formal theory of relative monads

In this chapter, we develop the beginnings of the formal theory of relative monads, which is integral to the un-
derstanding of the formal monad–theory correspondence. By formal theory, we mean the study of structures
not in the setting of categories, functors, and natural transformations, but in an arbitrary 2-category with
enough structure to define the objects of interest. Monads are a prototypical example of a structure that may
be studied formally, originally being defined as structured endofunctors of a categories [God58, §A.3], then
later being generalised to structured 1-cells on an object of a bicategory [Bén67, Definition 5.4.1] and studied
extensively in that setting [Str72b; Str72a]. Though there is a great deal to be said regarding the formal theory
of relative monads – most of the theory of monads extending to the relative setting, in addition to the new phe-
nomena arising in the context of relativity – we shall content ourselves here with developing enough material
to prove a general monad–theory correspondence, thereby recovering our motivating examples in Chapter 7.
We have consequently been forced to omit some important aspects of the story; we hope to provide a more
comprehensive treatment in the future.

Before we begin, we should note that an approach to the formal theory of relative monads was recently
proposed by Lobbia [Lob20]. Unfortunately, the theory developed there fails to capture an important family of
examples, namely that of relative monads in V-CAT, for V a monoidal category1. The problem is analogous
to that of defining pointwise extensions or full faithfulness in a 2-category. In [Str74b, §3], Street gave a
definition of pointwise extensions involving comma objects, which in particular recovers pointwise extensions
in CAT, but which is too strong for various 2-categories of enriched categories (cf. the introduction ibid.). For
similar reasons, representable full faithfulness of 1-cells in V-CAT is typically weaker than V-enriched full
faithfulness (cf. [SW78, Proposition 9]). Concretely, the issue in both cases is that 2-cells between generalised
elements do not correspond in general to hom-objects. Therefore, definitions involving global quantification
over generalised elements (such as comma objects, representability, or the operators of [Lob20, Definition 1.2])
are inherently flawed. The solution, appreciated first by Street and Walters [SW78] in their seminal study of
Yoneda structures, is to move to a context for formal category theory, such as Yoneda structures, proarrow
equipments [Woo82; Woo85], or lax idempotent pseudomonads [Koc95; Zöb76; BF99]. These settings permit
the internalisation of definitions involving hom-objects in such a way as to recover the appropriate definitions
for enriched categories and other category-like structures. Therefore, to give an appropriate definition of
relative monad in a 2-category, it will be necessary to work in such a setting. We should say that, while
Lobbia’s setting is not appropriate for our purposes, the ideas presented there are nevertheless valuable in the
formulation of a formal theory of relative monads, and we will take inspiration from several of the definitions
therein.

For any 2-category K, we may define the 2-category Mnd(K) of monads in K [Str72a]. Monads are par-
ticularly special structures, in that they are entirely diagrammatic notions: their data can be specified by a
2-functor from a 2-category freely generated by the axioms of a monad. Relative monads, however, are not:
their data includes an extension operator, which is a transformation between hom-objects. It is this data that

1We thank Dylan McDermott for pointing this out to us.
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necessitates the use of a context for formal category theory. In this thesis, we choose proarrow equipments
as our means by which to carry out formal category theory, as proarrow equipments are particularly gen-
eral. However, this means that we are technically unable to talk of “relative monads in a 2-category”: we
must instead talk of “relative monads in a proarrow equipment” (though it is usually harmless to elide the
distinction). In concrete examples, this is unproblematic, since there is often a canonical proarrow equipment
structure on a given 2-category2 (given in the setting of enriched categories, for instance, by the inclusion
V-Cat ↪→ V-Prof). However, it does introduce a subtlety not present in the study of monads, which raises
interesting questions: for instance, while it is known that distributive laws between monads in K arise as the
objects of the 2-category3 Mnd(Mnd(K)) [Str72a, §6; Bur73, §2], it is not clear whether something similar is
true for relative monads, as this would require the 2-category of relative monads in a proarrow equipment to
be equipped with a proarrow equipment structure.

We shall begin in Section 5.1 by briefly introducing the use of proarrow equipments (we refer to
Wood [Woo82; Woo85] for more comprehensive introductions), before defining relative adjunctions and
relative monads in a proarrow equipment in Section 5.2. We focus in particular on morphisms between
relative adjunctions, since these will be crucial to establishing the formal monad–theory correspondence. In
Section 5.3, we introduce Eilenberg–Moore objects for relative monads, which mostly follows the treatment
of Lobbia [Lob20, §4]. Eilenberg–Moore objects are necessary to relate relative monads and monads in
Section 5.4. Finally, in Section 5.5, we study how categories of j-monads may be embedded in categories of
(j ; j′)-monads via postcomposition, from which we derive several useful representation results.

5.1 Proarrow equipments
A proarrow equipment is, in effect, a calculus of homs. While a 2-category captures 2-dimensional equational
reasoning, a proarrow equipment captures reasoning about hom-objects. For instance, recall that an adjunc-
tion can be defined equivalently as either a pair of functors ` : A → B and r : B → A along with natural
transformations η : 1A ⇒ ` ; r and ε : r ; ` ⇒ 1B satisfying the triangle identities; or as a pair of functors
` : A → B and r : B → A along with an isomorphism B(`a, b) ∼= A(a, rb) natural in a ∈ A and b ∈ B.
The former definition can be internalised in any 2-category, but the latter cannot be expressed in an arbitrary
2-category, because there is no way to express the natural isomorphism of hom-sets. A proarrow equipment
facilitates the expression of the latter definition (after which both definitions can be proven equivalent, as
in the traditional setting). These kinds of operations on hom-sets (and, more generally, hom-objects) are
commonplace in category theory, and so this is a useful abstraction to capture traditional category theoretic
arguments in a general setting.

Formally, a proarrow equipment axiomatises the inclusion of the 2-category Cat of small categories, func-
tors, and natural transformations into the bicategory Prof of small categories, profunctors, and natural trans-
formations. Conceptually, a profunctor A −7−→ B, i.e. a functor Bop × A → Set, can be seen as a “generalised
hom-set”, sending the pair (b, a) to a set of “(hetero)morphisms” from b to a. In particular, for every category
A, the hom-functor A(−,−) is an endoprofunctor A −7−→ A: this is the identity profunctor on A. Composition
of profunctors is defined explicitly using coends, but abstractly it may be thought of as composition of het-
eromorphisms. Every functor f : A→ B induces a profunctor in two ways: the profunctor B(1, f) : A −7−→ B
maps (b, a) 7→ B(b, fa), while the profunctor B(f, 1) : B −7−→ A maps (a, b) 7→ B(fa, b). These profunc-
tors turn out to be adjoint in Prof: we have B(1, f) a B(f, 1). Therefore, there are two identity-on-objects
pseudofunctors, (−)∗ : Cat → Prof and (−)∗ : Catco op → Prof, related by an adjointness property. Both
are locally fully faithful, meaning that the 2-cells B(1, f) ⇒ B(1, g) are in natural bijection with the 2-cells
f ⇒ g, as are the 2-cells B(f, 1) ⇒ B(g, 1). Remarkably, it turns out that this structure is sufficient to
perform a great deal of category theory in a formal context.

Definition 5.1.1 ([Woo85, §0]). A proarrow equipment comprises
2In fact, this statement can be made precise in a suitable sense: every proarrow equipment satisfying a certain natural exactness

property is canonically determined by the codiscrete cofibrations in the domain 2-category [RW88].
3Here, we are distinguishing between the 2-category of monads in a 2-category, and the 1-category of monads on a 1-category as in

Corollary 4.8.5.
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1. a 2-category K and a bicategory N 4;
2. a locally fully faithful pseudofunctor (−)∗ : K → N ;
3. for every 1-cell f in K, a right adjoint f∗ a f∗ in N .

We call 1-cells of the form f∗ representable and 1-cells of the form f∗ corepresentable.

Much of the value of a context for formal category theory comes from the ability to transfer intuition from
(enriched) category theory to the formal context with little modification. To aid this intuition, it is invaluable
to have suggestive notation. Though we assume N is a bicategory, rather than a 2-category, in general, we
shall suppress the coherence isomorphisms as a notational convenience. We shall denote non-diagrammatic
composition inN by �, which in many ways acts like the tensor product of a monoidal category in enriched
category theory. Given a cospan X g−→ B

f←− Y in K, we shall write B(f, g) for f∗ � g∗ : X → Y in N : in
analogy with enriched category theory, it plays the role of a “hom-cell” (or hom-object in the case of monoidal
enrichment) from f to g. We shall also often simply write 1 for the identity 1-cell on an object. Note that this
means we have

A(1, 1) ∼= 1A B(fg, hi) ∼= C(g, 1)�B(f, h)�A(1, i) (5.1)

For each 1-cell f : A → B in K, we shall write f : A(1, 1) ⇒ B(f, f) for the unit of the adjunction
B(1, f) a B(f, 1) in N : conceptually, this is postcomposition by f . For convenience, we shall often also
write f : A(a, a)⇒ B(a ; f, a ; f) for the appropriate whiskering. Dually, we shall write

µf : B(1, f)�B(f, 1)⇒ B(1, 1)

for the counit: conceptually, this is composition along f . We shall write

µf,g,h : A(f, g)�A(g, h)⇒ A(f, h)

for the appropriate whiskering of µg , though we shall often elide the outer variables, and make explicit only
the 1-cell along which we are composing, writing µg also for the whiskering. We note that one of the triangle
laws gives us a cancellation law for composition: namely, that the following operation of postcomposing a
1-cell, and then composing along it, is idempotent (i.e. isomorphic to the identity).

C(f, ghi) ∼= C(f, gh)�A(1, i) C(f,gh)⊙h−−−−−−−→ C(f, gh)�B(h, hi)
C(f,g)⊙µh⊙B(1,hi)−−−−−−−−−−−−−→ C(f, ghi) (5.2)

The unit allows us to recover the notion of full faithfulness.

Definition 5.1.2. A 1-cell f : A→ B in K is fully faithful if f̄ is invertible.

Given a 2-cell ϕ : f ⇒ g in K, we shall write ϕ♯ : A(1, 1) ⇒ B(f, g) for its transpose, the 2-cell in N
given by f ;B(f, ϕ); in other words, by the pasting:

A B A
B(1,g)

B(f,1)

B(1,f)

A(1,1)

B(f,g)

B(1,φ)

f

∼=

Conversely, given a 2-cell ψ : A(1, 1) ⇒ B(f, g), we shall write ψ♭ : f ⇒ g for its transpose, the 2-cell in N
4The codomain of a proarrow equipment is often denoted M for (bi)modules, but we choose a different symbol, as we shall use M

to denote the right-class of a factorisation system in Chapter 6.
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given via local full faithfulness by (B(1, f)� ψ) ; (µf �B(1, g)); in other words, by the pasting:

A B A B
B(1,g)

B(f,1)

A(1,1)

B(1,f)

B(1,1)

B(1,f)

B(1,g)

ψ

µf

∼=

∼=

These transposition operations are inverse to one another, via the triangle identities, establishing that 2-cells
in K are the same as “internal 2-cells” in N .

As expected, B(f, g) is appropriately functorial in f and g. The covariant functoriality is induced trivially
by B(1,−). Given a 2-cell ϕ : f ⇒ g in K, we may construct a 2-cell B(ϕ, 1) : B(g, 1)⇒ B(f, 1) in N by

B(g, 1) ∼= B(1, 1)�B(g, 1)
f⊙B(g,1)−−−−−−→ B(f, f)�B(g, 1)

B(f,φ)⊙B(g,1)−−−−−−−−−−→ B(f, g)�B(g, 1)
µg−→ B(f, 1) (5.3)

in other words, by the pasting:

B A B A
B(g,1)

B(1,f)

B(f,1)

A(1,1)

B(1,g)

B(1,1)

B(g,1)

B(f,1)

f

B(1,φ)

µg

∼=

∼=

While this may appear to be a significant amount of notation to introduce, in practice it quickly becomes
natural to reason about proarrow equipments with this notation, using existing intuition about (enriched)
category theory.

Pointwise extensions

While left and right extensions can be defined in any 2-category, in practice the useful extensions of (enriched)
functors are the pointwise ones (cf. [Kel82, p. 65]), which satisfy a stronger universal property with respect to
profunctors. We shall have cause to employ pointwise extensions, and to that end, we recall the definition of
pointwise left extension in a proarrow equipment, in terms of a right lift (Definition 2.3.5) in N .

Definition 5.1.3 ([Woo82, §3]). Let j : A→ E and ` : A→ B be 1-cells in K. A 1-cell j ·▷ ` : E → B is the
pointwise left extension of ` along j when there is an isomorphism B(j ·▷ `, 1) ∼= B(`, 1)◀ E(j, 1) in N .

In particular, pointwise left extensions are left extensions in the sense of Definition 2.3.5. (The converse
does not generally hold.)

Lemma 5.1.4. Let j : A→ E and ` : A→ B be 1-cells in K. If a pointwise left extension j ·▷ ` exists, then it is
furthermore a left extension j ▷ `.
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Proof. We have natural bijections of 2-cells

j ·▷ `⇒ ·
((−)∗ is locally fully faithful)

B(1, j ·▷ `)⇒ B(1, ·)
(taking mates)

B(·, 1)⇒ B(j ·▷ `, 1)
(pointwise left extension)

B(·, 1)⇒ B(`, 1)◀ E(j, 1)
(right lift)

E(j, 1)�B(·, 1)⇒ B(`, 1)
(taking mates)

B(1, `)⇒ B(1, j ; ·)
((−)∗ is locally fully faithful)

`⇒ j ; ·

witnessing the universal property of the left extension j ▷ `.

We observe the following properties regarding the interaction between right lifts and right and left adjoints.

Lemma 5.1.5. Let p : E → Y and q : X → Y be 1-cells inN and let g : A→ E be a 1-cell inK. Then supposing
that q ◀ p : X → E exists, we have

E(g, 1)� (q ◀ p) ∼= q ◀ p(1, g)

Proof. Let r : X → A be a 1-cell in N . We have

r ⇒ E(g, 1)� (q ◀ p)
(transposing)

E(1, g)� r ⇒ q ◀ p
(right lift)

p(1, g)� r ⇒ q
(right lift)

r ⇒ q ◀ p(1, g)

Lemma 5.1.6. Let p : X → Y and q : E → Y be 1-cells inN and let h : Z → E be a 1-cell inK. Then supposing
that q ◀ p : E → X exists, we have

(q ◀ p)� E(1, h) ∼= (q � E(1, h))◀ p

Proof. Let r : Z → X be a 1-cell in N . We have

r ⇒ (q � E(1, h))◀ p
(right lift)

p� r ⇒ q � E(1, h)
(Lemma 2.3.7)

p� r ⇒ q � (E(h, 1)▶ 1)
(absolute extension)

p� r ⇒ E(h, 1)▶ q
(right extension)

p� r � E(h, 1)→ q
(right lift)

r � E(h, 1)→ q ◀ p
(Lemma 2.3.7)

r � (E(1, h)▷ 1)→ q ◀ p
(absolute extension)

E(1, h)▷ r → q ◀ p
(left extension)

r → (q ◀ p)� E(1, h)
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As a corollary, we may observe that 2-cells g ; (f ·▷ h)⇒ h are in bijection with 2-cells E(f, g)�E(h, i).
(In particular, this implies the representability property of [MT08, Definition 5, Proposition 2].)

Corollary 5.1.7. Let f, g, h, i : A→ E be 1-cells in K. If a pointwise left extension j ·▷ ` exists, then there is a
natural isomorphism of 2-cells

g ; (f ·▷ h)⇒ i

E(f, g)⇒ E(h, i)

Proof. We have

E(g ; (f ·▷ h), i) ∼= E(g ; (f ·▷ h), 1)� E(1, i)
∼= E(g, 1)� E(f ·▷ h, 1)� E(1, i)
∼= E(g, 1)� (E(h, 1)◀ E(f, 1))� E(1, i) (pointwise extension)
∼= (E(h, 1)◀ E(f, g))� E(1, i) (Lemma 5.1.5)
∼= (E(h, 1)� E(1, i))◀ E(f, g) (Lemma 5.1.6)
∼= E(h, i)◀ E(f, g)

and so
g ; (f ·▷ h)⇒ i

E(1, g ; (f ·▷ h))⇒ E(1, i)

A(1, 1)⇒ E(g ; (f ·▷ h), i)

A(1, 1)⇒ E(h, i)◀ E(f, g)

E(f, g)⇒ E(h, i)

Finally, the notion of pointwise left extension allows us to recover the notion of density.

Definition 5.1.8. A 1-cell f : A→ B in K is dense if the pointwise left extension f ·▷ f : B → B exists and
the canonical 2-cell f ·▷ f ⇒ 1B , given by applying

f ·▷ f ⇒ 1B
((−)∗ is locally fully faithful)

1B ⇒ B(f ·▷ f, 1)
(pointwise left extension)

1B ⇒ B(f, 1)◀B(f, 1)
(right lift)

B(f, 1)⇒ B(f, 1)

to the identity on B(f, 1), is invertible.

The important property of density is the following.

Lemma 5.1.9. Let j, f, g : A → E be 1-cells in K. If j is dense, then 2-cells f ⇒ g are in bijection with 2-cells
E(j, f)⇒ E(j, g).

Proof. 2-cells E(j, f)⇒ E(j, g) are, by Corollary 5.1.7, in bijection with 2-cells f ; (j ·▷ j)⇒ g, hence 2-cells
f ⇒ g when j is dense so that j ·▷ j ⇒ 1E is invertible.

5.1.1 Lax idempotent pseudomonads
We have mentioned that the motivating example of a proarrow equipment is the inclusion Cat → Prof. Ex-
plicitly, it is not so difficult to see why profunctors capture the structure of hom-sets and operations thereon.
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However, there is also an abstract perspective of the bicategory of profunctors that sheds light into its im-
portance: namely, Prof is the Kleisli bicategory for the presheaf construction [Hyl14a; Fio+18], which is the
free cocompletion of small categories [Ulm68]. As a free cocompletion, the presheaf construction forms a
lax idempotent pseudomonad relative to the inclusion Cat ↪→ CAT of small categories into locally-small
categories [Fio+18, §5], which extends to the small-presheaf construction, forming a lax idempotent pseu-
domonad on CAT for the small-cocompletion of locally-small categories. As mentioned at the beginning of
this chapter, a 2-category with a lax idempotent pseudomonad is an alternative context for formal category
theory (cf. [BF99]). Equipping a 2-category with a lax idempotent pseudomonad P is stronger than equipping
it with a proarrow equipment, in the sense that every lax idempotent pseudomonad canonically induces a
proarrow equipment (Definition 5.1.12). It will be useful in some cases to assume that our proarrow equip-
ment has arisen in this way, as it permits us to consider certain 1-cells f : A → B in N as represented by
1-cells f : A → PB in K. In particular, this is true for 2-categories of enriched categories (assuming a nice
enough base of enrichment), which form a motivating class of examples.

Lax idempotent pseudomonads were introduced independently (in a slightly stricter form than necessary)
by Kock [Koc95] and Zöberlein [Zöb76] to characterise cocompletions of categories. Later, Marmolejo [Mar97]
gave a more general definition eliminating unnecessary strictness. The terminology lax idempotent was intro-
duced by Kelly and Lack [KL97].

Definition 5.1.10 ([Mar97, §10]). A pseudomonad (P, µ,よ) is lax idempotent if either of the following two
equivalent conditions hold.

• There is an adjunction PよA a µA with invertible unit for every object A ∈ K.
• There is an adjunction µA aよPA with invertible counit for every object A ∈ K.

In this case, we say that a P-algebra is P-cocomplete and a P-homomorphism is P-cocontinuous. A lax idem-
potent monad is locally fully faithful if its unit is componentwise representably fully faithful (cf. [BF99, Re-
mark 1.12]).

There is much that can be said about the theory of lax idempotent pseudomonads, but we shall need very
little of it here. It will suffice to define the notion of admissibility (cf. [SW78]), which, conceptually, identifies
those 1-cells for which we can perform a nerve construction.

Definition 5.1.11 ([BF99, Definition 1.1]). Let (P, µ,よ) be a lax idempotent pseudomonad on a 2-category C.
A 1-cell f : A→ B in C is P-admissible if Pf : PA→ PB has a right-adjoint P∗f : PB → PA. In this case,
we denote by nf =よB ; P∗f : B → PA the nerve of f . Denote by AdmP(C) the locally full sub-2-category
of C on the P-admissible 1-cells.

Conceptually, the P-admissible 1-cells are those that are “small” in a suitable sense. In particular, when P
is the small presheaf construction, a functor f : A→ B is P-admissible just when the presheaf B(f−, b) is a
small presheaf for all b ∈ B (i.e. admissible in the sense of Definition 3.2.1). Our notation f∗ is intended to be
indicative of that for proarrow equipments, as explicated by the following definition.

For any locally fully faithful lax idempotent pseudomonad P on C, the pseudofunctor AdmP(C)→ C →
Kl(P) forms a canonical proarrow equipment (cf. [DL19, Definition 4.1]), since for every admissible 1-cell
f : A→ B, the right-adjoint P∗f : PB → PA is P-cocontinuous [BF99, Proposition 1.3].

Definition 5.1.12. A proarrow equipment (−)∗ : K → N corresponds to a lax idempotent pseudomonad P
on C if AdmP(C) → C → Kl(P) is equivalent to (−)∗ as a proarrow equipment: namely, if there is a 2-
equivalence AdmP(C) ' K and a biequivalence Kl(P) ∼ N making the following diagram commute up to
pseudonatural equivalence.

AdmP(C) C Kl(P)

K N
(−)∗

KP

∼≃
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In this case, for a P-admissible 1-cell f : A → B, we have B(1, f)
def
= f ;よB : A → PB and B(f, 1)

def
=

nf : B → PA.
Finally, we will occasionally need to make a smallness assumption on an object of K to ensure enough

pointwise extensions exist.

Definition 5.1.13 ([DL18, Definition 2.33]). Let (P,よ) be a lax idempotent pseudomonad on K. An object
A in K is P-small if every 1-cell in K with domain A is P-admissible.

In particular, when P is the small-presheaf construction on CAT, this is precisely the classical notion of
smallness for a category [DL18, Proposition 2.34].

5.2 Relative monads and relative adjunctions
We shall work henceforth in a proarrow equipment (−)∗ : K → N . Though relative monads are the primary
object of interest in this chapter, it is relative adjunctions that will be the primary object of study. A relative
adjunction acts as a kind of presentation for a relative monad: since a relative adjunction is defined in terms of
a universal property, it is often more convenient to work with than its corresponding relative monad, whose
axioms can be tiresome to check. With that in mind, we begin by defining relative adjunctions, and then show
how every relative adjunction induces a relative monad. Thenceforth, it will often be unnecessary to deal
directly with relative monads.

Definition 5.2.1 ([Woo82, §3; Ulm68, Definition 2.2]). A relative adjunction comprises

B

A E

ℓ r

j

⊣

1. a 1-cell j : A→ E in K, the root;
2. a 1-cell ` : A→ B in K, the left relative adjoint;
3. a 1-cell r : B → E in K, the right relative adjoint;
4. an isomorphism in N ,

] : B(`, 1) ∼= E(j, r) :[

the transposition operators.
We denote this situation by ` ja r, and call B the apex. A j-relative adjunction (or simply j-adjunction) is a
relative adjunction with root j.

Note that, while having an isomorphism B(`, 1) ∼= E(j, r) is a property, justifying the usual practice in
category theory of eliding the specific nature of the isomorphism, it will be important for our purposes to
treat it as a structure, making the transposition operators explicit.

Remark 5.2.2. When the root j is fully faithful, j-relative adjunctions are sometimes called partial adjunc-
tions (cf. [Kel82, §1.11]), as the left relative adjoint is defined on a sub-object of E.

Recall that adjunctions may be presented in several forms (cf. [Mac98, Theorem IV.1.2]). A relative adjunc-
tion does not evidently have the same flexibility, because it is not possible to define a counit without forming
a composite r ; ` (which does not type-check). (Conversely, a relative coadjunction, i.e. a relative adjunction
in Kco, has a counit rather than a unit.) However, it is possible to give a definition in terms of a unit and a
2-cell E(j, r)⇒ B(`, 1), without the 2-cell B(`, 1)⇒ E(j, r).

Lemma 5.2.3. Let j : A→ E, ` : A→ B, and r : B → E be 1-cells. The following are in bijection, natural in `
and r.

52



Chapter 5. The formal theory of relative monads 5.2. Relative monads and relative adjunctions

1. 2-cells ] : B(`, 1)⇒ E(j, r).

2. 2-cells η : j ⇒ ` ; r.

Proof. (1) =⇒ (2). Given a 2-cell ] : B(`, 1)⇒ E(j, r), we may form

A(1, 1)
ℓ=⇒ B(`, `)

♯ℓ==⇒ E(j, r`)

which is equivalently a 2-cell j ⇒ ` ; r.
(2) =⇒ (1). Given a 2-cell η : j ⇒ ` ; r, we may form

B(`, 1)
B(ℓ,1)r========⇒ E(r`, r)

E(η,r)=======⇒ E(j, r)

That these transformations are inverse follows from the triangle identities.

A relative adjunction may therefore equivalently be specified by a 2-cell η : j ⇒ ` ;r for which the induced
B(`, 1)⇒ E(j, r) is invertible.

Just as is the case for (non-relative) adjunctions, left relative adjoints are unique up to isomorphism; the
same is true for right relative adjoints in the presence of dense roots, though not in general (see [Ulm68, (2.5)]
for a counterexample).

Lemma 5.2.4. If ` ja r and `′ ja r, then ` ∼= `′. If ` ja r and ` ja r′ and j is dense, then r ∼= r′.

Proof. For essential uniqueness of the left relative adjoint, we have that B(`, 1) ∼= E(j, r) ∼= B(`′, 1) implies
B(1, `) ∼= B(1, `′) since an isomorphism of right adjoints implies an isomorphism of left adjoints, which in
turn implies ` ∼= `′ by local full faithfulness of (−)∗. For essential uniqueness of the right relative adjoint,
assuming j is dense, we have E(j, r) ∼= B(`, 1) ∼= E(j, r′) and hence E(1, r) ∼= E(1, r′).

As expected, relative adjunctions subsume non-relative adjunctions.

Proposition 5.2.5. Let ` : E → B and r : B → E be 1-cells in K. Then ` 1Ea r if and only if ` a r.

Proof. If ` a r, then B(`, 1) ∼= E(1, r) since (−)∗, being a pseudofunctor, preserves adjunctions. Conversely,
if B(`, 1) ∼= E(1, r), then E(1, r) is right adjoint to B(1, `) since B(1, `) a B(`, 1), so that ` a r since (−)∗
is locally fully faithful and hence reflects adjunctions.

We now introduce the notion of relative monad in a proarrow equipment. The definition here is new, but
essentially follows that of [ACU10, Definition 1] in CAT (cf. [Lob20, Definition 2.1]).

Definition 5.2.6 (Relative monad). A relative monad comprises
1. a 1-cell j : A→ E in K, the root;
2. a 1-cell t : A→ E in K, the underlying 1-cell;
3. a 2-cell τ : j ⇒ t in K, the unit;
4. a 2-cell † : E(j, t)⇒ E(t, t) in N , the extension operator,

such that the following diagrams commute:
1.

E(j, t) E(t, t)

E(j, t)

†

E(τ,t)

2.
A(1, 1) E(j, j) E(j, t)

E(t, t)
t

†

j E(j,τ)
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3.
E(j, t)� E(j, t) E(j, t)� E(t, t) E(j, t)

E(t, t)� E(t, t) E(t, t)

†⊙†

µt,t,t

E(j,t)⊙† µj,t,t

†

A j-relative monad (or simply j-monad) is a relative monad with root j. A morphism of j-monads from
(t, τ, (−)†) to (t′, τ ′, (−)†

′
) is a 2-cell ϕ : t⇒ t′ such that the following diagrams commute:

1.
t t′

j

φ

τ τ ′

2.
E(j, t) E(j, t′) E(t′, t′)

E(t, t) E(t, t′)

†

E(t,φ)

E(j,φ) †′

E(φ,t′)

j-monads and their morphisms form a 1-category RMnd(j).

We shall not define a 2-category of relative monads, as there are subtleties with the appropriate definition
of morphism5. Instead, we focus on the 1-category of relative monads with a fixed root.

Example 5.2.7. For any 1-cell j : A → E in K, there is a canonical j-monad (j, j, 1j , 1E(j,j)), which is the
initial object in RMnd(j). In a certain sense, this relative monad acts as a surrogate for the identity monad6.

Relative monads generalise ordinary monads in K: observe that a 2-cell † : E(1, t) ⇒ E(t, t) is equiva-
lently a 2-cell E(1, t)�E(1, t)⇒ E(1, t) by transposing, and hence a 2-cell t ; t⇒ t by local full faithfulness
of (−)∗. We note that essentially the same observation appears in [MW10, Lemma 9.1], where 1E-relative
monads are called extension systems7.

Proposition 5.2.8. For every object E of K, there is an isomorphism of 1-categories

RMnd(1E) ∼= Mnd(E)

Proof. Given an 1E-relative monad (t, τ, †), upon defining E(1, µ) to be the transpose of †, axioms (1 – 3) of
the relative monad exactly correspond to the left unit, right unit, and associativity laws for a monad (t, τ, µ);
and axioms (1 & 2) for a morphism of 1E-monads correspond to the unit and multiplication laws for a monad
morphism.

Just as every adjunction induces8 a monad, every relative adjunction induces a relative monad. We will
later also introduce morphisms of relative adjunctions and relate them to relative monad morphisms.

Proposition 5.2.9. Every relative adjunction induces a relative monad.
5There is evidence to suggest that the most obvious notion of morphism (cf. [Lob20, Definition 3.1]) is too strict to recover theorems

of interest.
6This intuition may be formalised by characterising relative monads as monoids in skew-monoidal hom-categories (cf. [ACU15, §3]),

for which j is the unit.
7In their terminology, 1E -relative comonads would be called lifting systems.
8The literature varies on the appropriate verb for the construction of a monad from an adjunction, induce (cf. [Hub61, §4]) and

generate (cf. [Str72a, Theorem 2]) being two popular terms. We shall prefer the former, the latter having connotations of computation.
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Proof. Let (j, `, r, ], [) be a relative adjunction. We have a unit η : j ⇒ ` ; r using Lemma 5.2.3, which is
explicitly defined by

E(1, j) ∼= E(1, j)�A(1, 1) E(1,j)⊙ℓ−−−−−−→ E(1, j)�B(`, `)
E(1,j)⊙♯−−−−−−→ E(1, j)� E(j, r`)

µj−→ E(1, r`)

so that the transpose is

E(r`, 1) ∼= B(`, 1)� E(r, 1)
♯⊙E(r,1)−−−−−−→ E(j, r)� E(r, 1)

µr−→ E(j, 1)

Define an extension operator † : E(j, r`)⇒ E(r`, r`) by

E(j, r`)
♭−→ B(`, `)

r−→ E(r`, r`)

(` ; r, η, †) forms a j-monad: the axioms for a relative monad are validated through sizeable but elementary
commutative diagrams as follows.

The first axiom:

E(j, r`) B(`, `) E(r`, r`)

B(`, 1)�B(1, `) B(`, 1)� E(r, r`)

E(j, r)�B(1, `) E(j, r)� E(r, r`)

E(j, r`)

µr

♯⊙E(r,rℓ)

♭ r

♯⊙B(1,ℓ)

B(ℓ,1)⊙r

E(j,r)⊙r

The second axiom (using the transpose of the unit directly):

A(1, 1) B(`, `) E(j, r`)

B(`, `)

E(r`, r`)

rℓ

♭

r

ℓ ♯
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The third axiom9:

E
(j,r`)�

E
(j,r`)

E
(j,r`)�

E
(`,`)

E
(j,r`)�

E
(r`,r`)

E
(j,r)�

B
(1
,`)�

B
(`,1)�

E
(r,r`)

E
(j,r)�

E
(r,r`)

E
(j,r`)

E
(j,r)�

B
(1
,`)�

B
(`,1

)�
B
(1
,`)

E
(j,r)�

B
(1,`)

B
(`,`)�

B
(`,`)

E
(`,1

)�
B
(1
,`)�

B
(`,1

)�
B
(1,`)

B
(`,1)�

B
(1
,`)

B
(`,`)

E
(r`,r`)�

E
(r`,r`)

E
(r`,r)�

B
(1
,`)�

B
(`,1)�

E
(r,r`)

E
(r`,r)�

E
(r,r`)

E
(r`,r`)

µ
r
ℓ

E
(j,r

ℓ)⊙
♭

E
(j,r

ℓ)⊙
r

♭r

♭⊙
♭

r⊙
r

♭⊙
B
(ℓ,ℓ)

µ
r

µ
ℓ

µ
r
ℓ

r⊙
B
(1
,ℓ)⊙

b
(ℓ,1

)⊙
r

µ
ℓ

r⊙
r

µ
ℓ

µ
r

E
(j,r

)⊙
r

µ
ℓ

♭⊙
B
(1
,ℓ)⊙

B
(ℓ,1

)⊙
B
(1
,ℓ)

9A strong advocate for the use of string diagrams over commutative diagrams.
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The previous proposition motivates the following definition.

Definition 5.2.10. Let j : A→ E be a 1-cell inK, and let T be a j-monad. A resolution10 of T is a j-adjunction
that induces T . A morphism of resolutions of T from ` ja r to `′ ja r′ is a 1-cell b : B → B′ between the
apices making the following diagrams commute.

B

A E

B′

ℓ r

ℓ′ r′

b

B(`, 1) B′(`′, b)

E(j, r)

♯′

b

♯

Resolutions of T and their morphisms form a 1-category Res(T ).

Though it is not necessarily the case for an arbitrary proarrow equipment that a given relative monad has
a resolution, we will be interested in the proarrow equipments for which this is the case. In particular, we are
concerned with relative monads having canonical resolutions given by universal properties.

Definition 5.2.11. A j-adjunction ` ja r inducing a j-monad T is
1. j-opmonadic (or Kleisli) if it is initial in Res(T ).
2. j-monadic (or Eilenberg–Moore) if it is terminal in Res(T ).

In this cases, we call the apex of the j-adjunction Kleisli or Eilenberg–Moore respectively.

Kl(T )

A E

kT vT

j

⊣

Kl(T ) B EM(T )

A E

ℓ r

j

kT

[]T

uT

⟨⟩T

⊣

EM(T )

A E

fT uT

j

⊣

Supposing their existence, we denote by kT ja vT the chosen Kleisli j-adjunction, and by fT ja uT the
chosen Eilenberg–Moore j-adjunction; and denote by []T : Kl(T ) → B the unique mediating morphism of
resolutions from a Kleisli object, and by 〈〉T : B → EM(T ) the unique mediating morphism of resolutions to
an Eilenberg–Moore object.

Kleisli and Eilenberg–Moore resolutions have universal properties with respect to a single relative
monad (namely, that which they induce). However, in many proarrow equipments of interest, they have a
further universal property with respect to relative monad morphisms. To express these, we must introduce a
notion of morphism of relative adjunction. In fact, there are two choices: one of which is necessary to
express the universal property of Kleisli morphisms (which we dub right-morphisms), and one of which is
necessary to express the universal property of Eilenberg–Moore morphisms (which we dub left-morphisms).
There is some symmetry in the definitions, but, unlike in the setting of non-relative monads, they are not
formally dual.

Definition 5.2.12. Let j : A→ E be a 1-cell in K. A right-morphism of j-adjunctions from ` ja r to `′ ja r′
comprises

B′

A B E
ℓ r

ℓ′
b

r′

ρ

1. a 1-cell b : B → B′ such that ` ; b = `′;
2. a 2-cell ρ : r ⇒ b ; r′,
10Resolutions of monads were introduced by [Cop70], called there factorisations of a monad. Resolutions of relative monads were

called splittings in [ACU10]. We follow the terminology of [LS88, Definition 0.6.4].
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rendering commutative the following diagram:

B(`, 1) E(j, r)

B′(`′, b) E(j, r′b)

♯

E(j,ρ)

♯′

b

It is strict if ρ is the identity. j-adjunctions and right-morphisms form a 1-category RAdjr(j).

Just as strict morphisms of adjunctions may be specified by several equivalent conditions (cf. [Mac98,
§IV.7]), in terms of (either of) the transposition operations, the unit, or the counit, so right-morphisms of
relative adjunctions may be expressed in terms of (either of) the transposition operations or the unit.

Lemma5.2.13. Let b : B → B′ be a 1-cell between apices of j-adjunctions ` ja r and `′ ja r′ and let ρ : r ⇒ b;r′

be a 2-cell. Then (b, ρ) is a right-morphism if and only if the following equality of 2-cells holds, where η is defined
as in Lemma 5.2.3.

B′

B

A E

ℓ r

ℓ′
b

r′

j

ρ

η

=
B′

A E

ℓ′ r′

j

η′

Proof. Suppose that (b, ρ) is a right-morphism, and observe that, by the axiom for a right-morphism, the
following diagram commutes:

A(1, 1) B(`, `) E(j, r`)

A(1, 1) B′(`′, `′) E(j, r′`′)

♯

E(j,ρℓ)

♯′

b

ℓ

ℓ′

By tensoring on the left by E(1, j) and then composing along j, we recover the coherence law for the units.
The converse holds by Lemma 5.2.3.

We are now in a position to show that the induction of a relative monad from a relative adjunction is
functorial with respect to right-morphisms (and hence trivially strict morphisms, when ρ is invertible).

Proposition 5.2.14. The induction of a j-monad from a j-adjunction as defined in Proposition 5.2.9 extends to
a 1-functor � : RAdjr(j)→ RMnd(j).

Proof. Let (b, ρ) be a right-morphism between relative adjunctions ` ja r and `′ ja r′. Left-whiskering ` on
to ρ produces a 2-cell (` ; ρ) : ` ; r ⇒ `′ ; r′. This preserves the unit by Lemma 5.2.13.

Observe that, for all s : B → E and φ : r ⇒ s, the following diagram commutes.

E(1, r`)�B(`, 1) E(1, s`)� E(s`, s)

E(1, r`)� E(r`, r) E(`, r)

E(1, r`)� E(r`, s) E(1, s)

µs

E(1,rℓ)⊙r

E(1,ϕℓ)⊙s

E(1,rℓ)⊙E(rℓ,ϕ)

µrℓ

E(ℓ,ϕ)

µr

µℓ
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Taking s = b ; r′, φ = ρ, tensoring on the left by E(1, r) and the right by B(1, `), so does the following:

E(r`, r`)�B(`, `) E(r`, r′`′)� E(r′`′, r′`′)

E(r`, r`)� E(r`, r`) E(r`, r`)

E(r`, r`)� E(r`, r′`′) E(r`, r′`′)

µr′ℓ′

E(rℓ,rℓ)⊙r

E(rℓ,ρℓ)⊙r′b

E(rℓ,rℓ)⊙E(rℓ,ρℓ)

µrℓ

E(rℓ,ρℓ)

µrℓ

µℓ

And therefore also the following:

B(`, `) E(r′`′, r′`′) A(1, 1)� E(r′`′, r′`′)

A(1, 1)�B(`, `) B(r`, r`)� E(r′`′, r′`′)

E(r`, r`)�B(`, `) E(r`, r′`′)� E(r′`′, r′`′)

E(r`, r`)� E(r`, r`)

E(r`, r`)� E(r`, r′`′) E(r`, r′`′)

µr′ℓ′

E(rℓ,rℓ)⊙r

E(rℓ,ρℓ)⊙r′b

E(rℓ,rℓ)⊙E(rℓ,ρℓ)

µrℓ

r′b

rℓ⊙B(ℓ,ℓ)

rℓ⊙E(r′ℓ′,r′ℓ′)

E(rℓ,ρℓ)⊙E(r′ℓ′,r′ℓ′)

Which, by the cancellation law for composition, is equivalent to commutativity of the following diagram.

B(`, `) E(r′`′, r′`′) A(1, 1)� E(r′`′, r′`′)

E(r`, r`)� E(r′`′, r′`′)

E(r`, r`) E(r`, r′`′) E(r`, r′`′)� E(r′`′, r′`′)
E(rℓ,ρℓ)

r

r′b

rℓ⊙E(r′ℓ′,r′ℓ′)

E(rℓ,ρℓ)⊙E(r′ℓ′,r′ℓ′)

µr′ℓ′

Furthermore, since ] and ]′ are invertible, the following diagram commutes.

B(`, 1) E(j, r)

B′(`′, b) E(j, r′b)

♭

E(j,ρ)

♭′

b

Therefore, the following diagram commutes, demonstrating that the operator for the induced j-monad is
preserved.

E(j, r`) E(j, r′`′) B′(`′, `′) E(r′`′, r′`′)

B(`, `)

E(r`, r`) E(r`, r′`′)
E(rℓ,ρℓ)

E(j,ρℓ)

E(ρℓ,r′ℓ′)

♭′ r′

♭

r

b

r′b
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When j is dense, Lemma 5.2.4 states that right relative adjoints are uniquely determined by their left
relative adjoints. A similar statement holds for right-morphisms of relative adjunctions: when j is dense, the
2-cell between the right relative adjoints is uniquely determined by the 1-cell between the apices.

Lemma 5.2.15. Let j : A → E be a dense 1-cell in K. A right-morphism of j-adjunctions (b, ρ) from ` ja r
to `′ ja r′ is uniquely determined by b. Conversely, every 1-cell b under A underlies a right-morphism of j-
adjunctions.

Proof. The right-morphism axiom requires the following diagram to commute:

B(`, 1) E(j, r)

B′(`′, b) E(j, r′b)

♯

E(j,ρ)

♯′

b

Since ] is invertible, this is equivalent to commutativity of the following diagram:

B(`, 1) E(j, r)

B′(`′, b) E(j, r′b)

♭

E(j,ρ)

♯′

b

Hence E(j, ρ) is uniquely determined by b. Since j is dense, the 2-cell ρ is consequently also uniquely deter-
mined by b, and conversely.

Consequently, we have the following.

Corollary 5.2.16. Let j : A→ E be a dense 1-cell. The forgetful 1-functor RAdjr(j)→ A/K, given by sending
a j-adjunction to its left adjoint and a right-morphism (b, ρ) to b is fully faithful.

Proof. By Lemma 5.2.15, right-morphisms are determined by their 1-cells when j is dense, and so the function
(b, ρ) 7→ b is bijective.

As mentioned earlier, we will be interested in 2-categories admitting initial resolutions of relative monads,
which are appropriately functorial with respect to relative monad morphisms. We axiomatise this property
through adjointness as follows.

Definition 5.2.17. Let K be a 2-category and let j : A → E be a 1-cell. K admits Kleisli constructions for
j-monads if � : RAdjr(j) → RMnd(j) has a fully faithful left adjoint, which we denote
Klj : RMnd(j)→ RAdjr(j), and if the transpose of an identity j-monad morphism is a strict
right-morphism.

Conceptually, a fully faithful left adjoint to � gives an assignment of a resolution to each monad, as well
as an assignment of a right-morphism between Kleisli resolutions given a relative monad morphism between
the corresponding relative monads; asking that the transpose of an invertible morphism be strict means that
right-morphisms between resolutions of the same relative monad are strict: this is necessary for initiality of
the Kleisli resolution.

The following lemma is useful in practice to establish that particular 2-categories admit Kleisli construc-
tions.

Lemma 5.2.18. The following are equivalent.
1. K admits Kleisli constructions for j-monads.

2. (a) Every j-monad admits an initial resolution;
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(b) (invertible) j-monad morphisms are in natural bijection with (strict) right-morphisms between their
initial resolutions;

(c) for every j-monad T and j-adjunction `′ ja r′ with apex B′, a right-morphism Kl(T ) → B′ has a
unique lift along []T ′ :

Kl(T ′)

Kl(T ) B′

A
kT ℓ′

[]T ′

b

Proof. (1) =⇒ (2).
(a) Let T be a j-monad, let ` ja r be a resolution of T , and denote by kT ja vT the j-adjunction Klj(T )

with apex Kl(T ). Since Klj a �, we have a natural isomorphism RAdjr(j)(Klj(T ), ` ja r) ∼=
RMnd(j)(T, T ), and so the identity 1T exhibits a right-morphism Kl(T ) → B, which is strict by as-
sumption. Conversely, let b : Kl(T )→ B be a strict morphism of j-adjunctions, hence a right-morphism
of j-adjunctions. We have an induced j-monad morphism T ⇒ T , which is the identity because the
morphism was strict. Thus Klj(T ) is initial amongst resolutions of T .

(b) For the bijection between j-monad morphisms and right-morphisms between Kleisli resolutions, ob-
serve that RAdjr(j)(Klj(T ),Klj(T ′)) ∼= RMnd(j)(T, T ′). Furthermore, this bijection preserves and
reflects isomorphisms, since Klj is a fully faithful functor.

(c) Finally, given a right-morphism b : Kl(T )→ B′, we have

RAdjr(j)(Klj(T ), `
′
ja r′) ∼= RMnd(j)(T, T ′) ∼= RAdjr(j)(Klj(T ),Klj(T

′))

and so there is a right-morphism Klj(T ) → Klj(T ′) → B′ necessarily equal to b since it induces the
same j-monad morphism. Therefore b factors through the lift uniquely.

(2) =⇒ (1). We define a functor Klj : RMnd(j) → RAdjr(j) as follows. On objects, Klj(T ) is given
by the initial resolution kT ja vT . By assumption, we have that j-monad morphisms are in bijection with
right-morphisms between Kleisli resolutions, which defines the action on morphisms. This functor is a section
of �, since each j-monad is sent to a resolution, so that Klj is fully faithful. Finally, to each right-morphism
Kl(T )→ B′, we have a right-morphism Kl(T )→ Kl(T ′), hence a j-monad morphism T ⇒ T ′; conversely,
given an (invertible) j-monad morphism T ⇒ T ′, hence an (invertible) right-morphism Kl(T ) → Kl(T ′),
we obtain a (strict) right-morphism Kl(T ) → B′ by postcomposing []T ′ . This correspondence is naturally
bijective, and exhibits Klj as left-adjoint to �.

The following consequence will be crucial to the formal relative monad–theory correspondence: it states
that relative monads and their morphisms may be represented by their relative left adjoints and
right-morphisms between them, at least when j is dense.

Corollary 5.2.19. Let j : A→ E be a dense 1-cell and suppose thatK admits Kleisli constructions for j-monads.
There is a fully faithful functorRMnd(j)→ A/K sending each j-monad to the Kleisli inclusion kT : A→ Kl(T ).

Proof. There is a fully faithful functor RMnd(j) → RAdjr(j) by Lemma 5.2.18(a & b), which we compose
with the fully faithful functor RAdjr(j)→ A/K of Corollary 5.2.16.

We shall use left-morphisms of relative adjunctions only sparingly, so we omit a detailed treatment; for
now, we shall content ourselves simply by defining them. In addition, we take the unit preservation condition
to be primary here, rather than a condition involving preservation of the transposition operators: this is purely
for subsequent convenience.
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Definition 5.2.20. Let j : A → E be a 1-cell in K. A left-morphism of j-adjunctions from ` ja r to `′ ja r′
comprises

B′

A B E
ℓ r

ℓ′
b

r′

1. a 1-cell b : B → B′ such that b ; r′ = r;
2. a 2-cell λ : `′ ⇒ ` ; b,

such that
B

B′

A E

ℓ r

ℓ′

b

r′

j

η′

λ =
B′

A E

ℓ r

j

η

It is strict if λ is the identity. j-adjunctions and left-morphisms form a 1-category RAdjl(j).

5.3 Algebras
Just as a 2-category may admit Kleisli constructions for relative monads, so too may it admit Eilenberg–Moore
constructions. However, in some instances, these universal properties are too weak. Recall that Kleisli objects
and Eilenberg–Moore objects for (non-relative) monads may be characterised in twoways: either as the apices
of initial and terminal resolutions respectively, or as universal right- and left-modules (i.e. (op)algebras). The
former is more commonly encountered in classical category theory, while the latter is the property axioma-
tised by Street in the formal theory of monads [Str72a, §1]. From this property, it is possible to prove the
resolution-based universal property [Str72a, Theorem 3], and vice versa [Aud74, Theoreme 4.4]. However,
this correspondence makes crucial use of the fact that Eilenberg–Moore objects may be characterised repre-
sentably as Eilenberg–Moore categories for monads on hom-categories [Str72a, Theorem 8]. This fact does
not evidently carry across to relative monads11. Therefore, the two definitions of Kleisli and Eilenberg–Moore
objects for monads generalise to relative monads seemingly in two different directions. We use Kleisli object
and Eilenberg–Moore object to refer to the definitions in terms of universal resolutions, as this aligns with the
original motivation for Kleisli and Eilenberg–Moore categories; and use opalgebra-object and algebra-object
for the definitions in terms of universal right- and left-modules, as this aligns with Street’s terminology. For
our purposes, it suffices to consider for Kleisli objects only the resolution universal property, but we shall
require Eilenberg–Moore objects with both universal properties.

To define algebra-objects, we must introduce the notion of left-module for a relative monad.

Definition 5.3.1 (cf. [Lob20, Definitions 4.1 & 4.2]). Let T be a j-monad and let M be an object of K. An
M -indexed left-module for T comprises

1. a 1-cellm : M → E;
2. a 2-cell ‡ : E(j,m)⇒ E(t,m),

such that
11We shall spell out where the problem arises for the interested reader. Given a relative monad T in K and an object X ∈ K, there

is a relative monadK[X,T ] inK induced by postcomposition. Furthermore, the left-modules for T (Definition 5.3.1) induce algebras for
K[X,T ]. However, the converse is not true in general, essentially because operators in the sense of [Lob20, Definition 1.2] are not in
bijection with 2-cells (in other words, the analogue of [MV17, Lemma 2.2] for arbitrary operators does not hold). Therefore, the desired
isomorphism corresponding to [Str72a, Theorem 8] does not hold in general for relative monads.
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1.
E(j,m) E(t,m)

E(j,m)

‡

E(τ,m)

2.
E(j, t)� E(j,m) E(j, t)� E(t,m) E(j,m)

E(t, t)� E(t,m) E(t,m)

†⊙‡

µt

E(j,t)⊙‡ µt

‡

A morphism ofM -indexed left-modules for T from (m, ‡) to (m′, ‡′) is a 2-cell ψ : m⇒ m′ such that the
following diagram commutes:

E(j,m) E(j,m′)

E(t,m) E(t,m′)

‡

E(j,ψ)

‡′

E(t,ψ)

M -indexed left-modules for T and their morphisms form a 1-categoryModl(T,M), functorial contravari-
antly in T andM .

There are two canonical examples of left-modules for relative monads. First, every relative monad forms
a left-module for itself, akin to how every monoid forms a left-action for itself.

Lemma 5.3.2. Let T = (t, τ, †) be a j-monad. Then (t, †) is an A-indexed left-module for T .

Proof. The unit and compatibility axioms follow directly from the left-unit and associativity axioms for a
relative monad.

Second, every resolution of a relative monad induces a left-module for that relative monad.

Lemma 5.3.3. Let ` ja r be a relative adjunction inducing a j-monad T . Then r may be equipped with the
structure of a left-module for T .

Proof. The extension operator ‡ : E(j, r)⇒ E(r`, r) is given by

E(j, r)
♭=⇒ B(`, 1)

B(ℓ,1)⊙r==========⇒ E(r`, r)

The left-module axioms are then given as in the proofs of the first and third axioms for a relative monad in
Proposition 5.2.9.

When j is the identity, left-modules (morphisms) reduce to the usual notion of left-module (morphism) for
a monad in essentially the same way as Proposition 5.2.8: a 2-cell E(1,m)⇒ E(t,m) is equivalent to a 2-cell
E(1, t ;m)⇒ E(1,m) by transposition, and hence a 2-cell t ;m⇒ m inK, and the axioms correspond by the
usual manipulation of units and counits. We define an algebra-object to be a universal left-module (cf. [KS74,
§3.3]).

Definition 5.3.4 (cf. [Lob20, Definition 4.3]). LetT be a j-monad. An algebra-object forT is a 2-representation
for Modl(T,−) : Kop → Cat.

Suppose that Alg(T ) is an algebra-object for a j-monad T . The identity on Alg(T ) induces an Alg(T )-
indexed left-module for T , i.e. a 1-cell uT : Alg(T ) → E and a 2-cell E(j, uT ) ⇒ E(t, uT ). In addition, the
A-indexed left-module (t, †) induces a 1-cell fT : A → Alg(T ) such that fT ; uT = t. Therefore, we have a
2-cell τ : j ⇒ fT ; uT given by the unit of T , hence a 2-cell ] : Alg(T )(fT , 1)⇒ E(j, uT ) by Lemma 5.2.3. It
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does not appear to be the case that fT ja uT in general, i.e. that ] is invertible12; however, we shall require
this stronger condition to hold.

Definition 5.3.5. An algebra-object Alg(T ) is Eilenberg–Moore if ] : Alg(T )(fT , 1) ⇒ E(j, uT ) has an in-
verse, denoted [ : E(j, uT )⇒ Alg(T )(fT , 1), and if

E(j, t)
♭fT====⇒ Alg(T )(fT , fT )

uT===⇒ E(t, t)

is equal to †.

Note that, since fT ; uT = t, the relative adjunction associated to an Eilenberg–Moore algebra-object for
T is necessarily a resolution of T (since the units and extension coincide). Furthermore, it is necessarily a
terminal resolution, justifying our nomenclature.

Lemma 5.3.6. Let Alg(T ) be an Eilenberg–Moore algebra-object for T . The resolution fT ja uT is terminal in
Res(T ).

Proof. Let ` ja r be a resolution of T . Then r forms a left-module for T by Lemma 5.3.3, and so there is a
unique 1-cell 〈〉T : B → Alg(T ) such that 〈〉T ;uT = r and 〈〉T ;‡ = B(`, 1)�r. We have ` ;〈〉T ;uT = ` ;r = t
and likewise for the extension operator †, so that `;〈〉T induces the same left-module as fT , so that `;〈〉T = fT .
Therefore, 〈〉T is a morphism of resolutions from ` ja r to fT ja uT . Conversely, for any such morphism
b : B → EM(T ) of resolutions, we have b ;‡ = B(`, 1)�r since ‡ is induced by fT ja uT , so that b = 〈〉T .

Eilenberg–Moore algebra-objects satisfy a useful universal property with respect to left-morphisms of
relative adjunctions. The reader should note the strong resemblance of the following to Lemma 5.2.18(2)(c)
(we note that methods similar to those used in the proof of that lemma could be used to give an alternative
proof of the following).

Lemma 5.3.7. Let j : A→ E be a 1-cell and let T and T ′ be j-monads having Eilenberg–Moore algebra-objects.
Consider a resolution ` ja r of T . For every left-morphism b : B → EM(T ′), there is a unique extension along
〈〉T ′ :

EM(T )

B EM(T ′)

E
uT ′r

⟨⟩T

b

Proof. Observe that from the left-morphism (b, λ), we can construct a j-monad morphism

t′ = fT ′ ; uT ′
λ==⇒ ` ; b ; uT ′ = ` ; r = t

The Eilenberg–Moore object EM(T ) is equipped with a 2-cellE(j, uT )⇒ E(t, uT ), from which we construct
a 2-cell

E(j, uT )⇒ E(t, uT )⇒ E(t′, uT )

by precomposition, equipping uT : EM(T ) → E with the structure of a left-module for T ′. Thus there is an
induced 1-cell EM(T ) → EM(T ′) from the universal property of EM(T ′), which is a unique extension of b
along 〈〉T , again by the universal property.

12This may suggest that our definition of algebra-object is not quite correct, and that we should be looking for a definition involving
the structure of the proarrow equipment. At present, it is not clear for what structure we should be looking, and so we leave this as an
open question.
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While it is possible to describe the functoriality of the association of (Eilenberg–Moore) algebra-objects to
relative monads (in which case, we obtain a 2-adjoint characterisation of the construction of algebras similar
to that in [Str72a, §1]), we shall not need it for the purposes of the formal monad–theory correspondence,
and therefore omit a treatment here. However, we shall record one property that we derive here directly,
but which may be derived by more general methods, along the lines of Corollary 5.2.19, given a 2-functorial
understanding of algebra-objects.

Proposition 5.3.8. Let j : A → E be a 1-cell and assume K admits algebra-objects for every j-monad. The
assignment of uT : Alg(T )→ E to a j-monad T extends to a fully faithful functor Algj : RMnd(j)op → K/E.

Proof. Let T and T ′ be j-monads and let ϕ : T → T ′ be a j-monad morphism. We may construct a 1-cell
Alg(T ′)→ Alg(T ) as follows. We have a 2-cell

E(j, uT ′)
‡=⇒ E(t′, uT ′)

E(φ,uT ′ )==========⇒ E(t, uT ′)

which exhibits uT ′ as anAlg(T ′)-indexed left-module for T , the left-module laws following from those for uT ′

as a left-module for T ′. By the universal property ofAlg(T ), there is therefore an induced 1-cell ! : Alg(T ′)→
Alg(T ) satisfying ! ; uT = uT ′ . Functoriality follows by the uniqueness of induced 1-cells by the universal
property of Alg(T ).

Conversely, suppose thatm : Alg(T ′)→ Alg(T ) is a 1-cell over E. By the universal property of Alg(T ),
this corresponds to an Alg(T ′)-indexed left-module for T , i.e. a 1-cell uT ′ = m ; uT and 2-cellm ; ‡ : E(j,m ;
uT )⇒ E(t,m ;uT ) satisfying the left-module laws. Precomposing by fT ′ , since fT ′ ;m ;uT = fT ′ ;uT ′ = t′,
we obtain a 2-cell fT ′ ;m ; ‡ : E(j, t′) ⇒ E(t, t′), from which applying τ ′ : j ⇒ t′ produces a 2-cell t ⇒ t′

satisfying the laws for a j-monad morphism. That these two constructions are mutually inverse follows again
from the uniqueness property of the universal property of Alg(T ).

Remark 5.3.9. While it is possible to define opalgebra-objects, we shall not need them for the purposes of the
formal monad–theory correspondence, and therefore omit a treatment here. The interested reader is referred
to Lobbia [Lob20, Definitions 6.1, 6.2 & 6.3] from which the appropriate definitions may be derived.

5.4 Restriction and extension
To prove a formal monad–theory correspondence, it will be necessary to relate relative monads to non-relative
monads. The crucial invariant in any such relationship is the preservation of algebras: this is crucial, because
the monad–theory correspondence should commute with the construction of algebras. To this end, we intro-
duce the concepts of j-ary monads and realisable j-monads. Intuitively, for j : A→ E a 1-cell in K, a monad
on E is j-ary when its algebras are determined by its action on A.

Definition 5.4.1. Let j : A→ E be a 1-cell. AmonadT ′ onE admitting an Eilenberg–Moore algebra-object is
j-ary when there exists a j-monad T (necessarily unique up to isomorphism) admitting an algebra-object, and
an isomorphism EM(T ) ∼= EM(T ′) in K/E. Denote by Mndj(E) the full subcategory of Mnd(E) spanned
by the j-ary monads.

Conversely, a relative monad is realisable when it can be extended to a monad with the same algebras.

Definition 5.4.2. Let j : A → E be a 1-cell. A j-monad T admitting an Eilenberg–Moore algebra-object is
realisable when there exists a monad T ′ on E (necessarily unique up to isomorphism) admitting an algebra-
object, and an isomorphism EM(T ) ∼= EM(T ′) in K/E. Denote by RMndE(j) the full subcategory of
RMnd(j) spanned by the realisable j-monads.

The categories of realisable j-monads and the j-ary monads are equivalent, essentially by definition. This
equivalence will provide the core of the formal monad–theory correspondence, once we identify theories with
relative monads.

65



Chapter 5. The formal theory of relative monads 5.4. Restriction and extension

Proposition 5.4.3. The categories of realisable j-monads and j-ary monads are equivalent:

RMndE(j) ' Mndj(E)

and this equivalence commutes with taking algebras.

Proof. By definition, there is a fully faithful assignment RMndE(j) → Mnd(E) commuting with taking
algebras, the action on j-monad morphisms induced by full faithfulness of Algj : RMndE(j)op → K/E and
Alg1E : Mnd(E)op → K/E (Proposition 5.3.8). Necessarily, each monad in the image of this assignment
is j-ary, defining a retraction. Conversely, each j-ary monad T is assigned to a realisable j-monad that is
realised by a monad T ′ such that Alg(T ) ∼= Alg(T ′). Therefore T ∼= T ′ by Proposition 5.3.8, exhibiting the
assignment as an equivalence.

There is an elementary characterisation of the realisable monads, assuming algebra-objects are Eilen-
berg–Moore, as demonstrated by the following lemma.
Lemma 5.4.4. Let j : A → E be a 1-cell, and let T be a j-monad admitting an algebra-object. Assume that
algebra-objects for relative monads are Eilenberg–Moore. Then T is realisable if and only if uT has a left adjoint.
In this case, uT is strictly monadic, and T is realised by the induced monad.

EM(T )

A E
j

fT uT⊣

Proof. Assume there exists a 1-cell f : E → EM(T ) such that f a uT , and denote by T ′ the induced monad.
Since fT ja uT and j ; f ja uT , we have fT ∼= j ; f by uniqueness of relative left adjoints. Hence, by
terminality of EM(T ′), there is a unique 1-cell ! : EM(T )→ EM(T ′)making the following diagram commute.

E

EM(T ) EM(T ′)

E

!

uT uT ′

f fT ′

Conversely, by terminality of EM(T ), there is a unique 1-cell

!

: EM(T ′) → EM(T ) making the following
diagram commute.

A

EM(T ′) EM(T )

E

!

uT ′ uT

j;fT ′ j;f

However, clearly ! ;

!

: EM(T ) → EM(T ) is a morphism of j-adjunctions from j ; f ja uT to j ; f ja uT ,
and hence the identity by terminality of EM(T ). Conversely,

!

; ! : EM(T ′) → EM(T ′) is a morphism of
adjunctions from fT ′ a uT ′ to f ; ! a uT ′ , since the following diagram commutes, and hence the identity by
terminality of EM(T ′).

E

EM(T ) EM(T ′) EM(T ) EM(T ′)!

f fT ′

!

!

Therefore ! is an isomorphism with !−1 =

!

, exhibiting uT as strictly monadic, and so EM(T ) ∼= EM(T ′) in
K/E, exhibiting T as realisable.

Conversely, if T is realisable, then there exists a monad T ′ such that EM(T ) ∼= EM(T ′) in K/E. Since
uT ′ has a left adjoint, so does uT , inherited from uT ′ via the isomorphism.
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We may also give several alternative characterisations of j-ary monads. First, we show that every j-ary
monad is exhibited by a canonical j-monad, and then give several sufficient conditions for demonstrating that
a monad is j-ary.

Let T be a monad on E admitting an algebra-object and suppose that the j-monad j ; T also admits an
algebra-object. Then the 2-cellE(1, uT )⇒ E(t, uT ) induces a 2-cellE(j, uT )⇒ E(j ;t, uT ) by postcomposi-
tion withE(j, 1), which is a left-module for j ;T . Hence there is a canonical 1-cell 〈〉j;T : Alg(T )→ Alg(j ;T )
by the universal property of Alg(j ; T ). If the algebra-objects are Eilenberg–Moore, then this is equivalently
the canonical 1-cell 〈〉j;T : EM(T )→ EM(j ; T ) induced by precomposing the j-adjunction fT ja uT by j.

Lemma 5.4.5. Let T be a monad on E admitting an algebra-object and suppose that the j-monad j ; T also
admits an algebra-object. Assume that algebra-objects for relative monads are Eilenberg–Moore. Then T is j-ary
if and only if the canonical 1-cell 〈〉j;T : EM(T )→ EM(j ; T ) is invertible.

Proof. If 〈〉j;T : EM(T )→ EM(j ; T ) is invertible, then T is j-ary by definition.
Conversely, supposing that T is j-ary, there is a j-monad T ′ and invertible 1-cell ! : EM(T ) ⇄ EM(T ′) :

!

over E. By the universal property of EM(T ′) in Lemma 5.3.7, we have a commutative triangle as follows.

EM(j ; T )

EM(T ) EM(T ′)
!

⟨⟩j;T !̄

We have
〈〉j;T ; !̄ ;

!

= ! ;

!

= 1EM(T )

Conversely, by the universal property of EM(j ;T ), there is a unique 1-cell 〈〉j;T making the following triangle
commute, which is hence necessarily the identity.

EM(j ; T )

EM(T ) EM(j ; T )
⟨⟩j;T

⟨⟩j;T ⟨⟩j;T

Therefore, since
〈〉j;T ; !̄ ;

!

; 〈〉j;T = 〈〉j;T
we have

!̄ ;

!

; 〈〉j;T = 〈〉j;T = 1EM(j;T )

exhibiting 〈〉j;T , and hence !̄, as invertible.

Theorem 5.4.6. Let T ′ be a j-monad admitting an algebra-object. Assume that algebra-objects for relative
monads are Eilenberg–Moore. The following are equivalent for each monad T on E admitting an algebra-object,
and uniquely identify T up to isomorphism in Mnd(E), exhibiting T ′ as realisable.

1. T is j-ary, and j ; T ∼= T ′ in RMnd(j).
2. There exists an isomorphism s : EM(T ′) ∼= EM(T ) such that s ; uT = uT ′ .

3. There exists an equivalence s : EM(T ′) ' EM(T ) and isomorphism s ; uT ∼= uT ′ .

4. The forgetful 1-cell uT ′ : EM(T ′) → E′ has a left adjoint, and the induced monad is isomorphic to T in
Mnd(E).

Proof. (1) ⇐⇒ (2). In both cases, T is j-ary, the former by assumption and the latter by definition, so
that EM(T ) ∼= EM(j ; T ) over E′ using Lemma 5.4.5. The result then follows in both directions by applying
Proposition 5.3.8 and composing with the isomorphism that was assumed. Uniqueness of T up to isomorphism
is then evident.
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(2) =⇒ (3) =⇒ (4) is clear.
(4) =⇒ (2). By Lemma 5.4.4, uT ′ is strictly monadic, exhibiting EM(T ′) ∼= EM(T ), since the induced

monad is T .

It will be helpful to have a method to extend relative adjunctions to adjunctions. In particular, relative
adjunctions with dense roots may be extended to (non-relative) adjunctions assuming the existence of certain
pointwise extensions (Definition 5.1.3).

Proposition 5.4.7. Let j : A → E be a dense 1-cell, and let ` ja r be a relative adjunction. Then r has a left
adjoint if and only if the pointwise left extension j ·▷ ` exists, in which case j ·▷ ` a r.

B

A E
j

ℓ
r⊣

Proof. We have

E(1, r) ∼= E(j ·▷ j, 1)� E(1, r) (j is dense)
∼= (E(j, 1)◀ E(j, 1))� E(1, r) (pointwise extension)
∼= E(j, r)◀ E(j, 1) (Lemma 5.1.6)
∼= B(`, 1)◀ E(j, 1) (` ja r)
(∗)∼= B(j ·▷ `, 1) (pointwise extension)

where the (∗) holds if and only if the pointwise extension j ·▷ ` exists; if there exists some `′ such that `′ a r,
then this has the universal property of the pointwise extension j ·▷ `.

Consequently, for particularly nice j, along which pointwise extensions are plentiful, all j-monads are
realisable by monads. In particular, this will be shown in Section 7.3 to be the case for the monad–theory
correspondences appearing in the literature for enriched categories.

Corollary 5.4.8. Let j : A → E be a dense 1-cell and suppose that j-monads admit Eilenberg–Moore algebra-
objects. If K admits all pointwise left extensions along j, then every j-monad is realisable, and there is an equiv-
alence

RMnd(j) ' RMndE(j) ' Mndj(E)

Proof. Let T be a j-monad. Since the left extension j ·▷ fT exists by assumption, j ·▷ fT a uT by Proposi-
tion 5.4.7 and hence T is realisable by Lemma 5.4.4. The equivalence then follows from Proposition 5.4.3.

5.5 Embedding
There remains one aspect of the formal theory of relative monads that we require for the formal monad–theory
correspondence, which will facilitate a characterisation of the algebras for a theory. With this motivation in
mind, we investigate the process of embedding the category of j-monads into the category of (j ; j′)-monads
for a fully faithful 1-cell j′.

Proposition 5.5.1. Let j : A → E and j′ : E → E′ be 1-cells. Suppose that j′ is fully faithful. Then there is a
fully faithful functor (−) ; j′ : RMnd(j) ↪→ RMnd(j ; j′).

Proof. Let (t, τ, †) be a j-monad. We define an extension operator † ; j′ : E(j ; j′, t ; j′) ⇒ E(t ; j′, t ; j′) as
follows:

E(j ; j′, t ; j′)
(j′)−1

−−−−→ E(j, t)
†−→ E(t, t)

j′−→ E(t ; j′, t ; j′)
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Then it is easy to check that (t ; j′, τ ; j′, † ; j′) forms a (j ; j′)-monad. Similarly, given a j-monad morphism
τ : t ⇒ t′, the 2-cell τ ; j′ ; t ; j′ ⇒ t′ ; j′ is easily seen to be a (j ; j′)-monad morphism. This assignment is
trivially functorial, and furthermore fully faithful since every 2-cell t ;j′ ⇒ t′ ;j′ is equivalently a 2-cell t⇒ t′

by full faithfulness of j′, the former being a (j ; j′)-monad morphism if and only if the latter is a j-monad
morphism.

This embedding does not necessarily preserve algebras. However, there is a strong relationship between
algebras for j-monads and the algebras for their induced (j ; j′)-monads, which we shall shortly use to great
effect.

Theorem 5.5.2. Let j : A → E be a 1-cell, let j′ : E → E′ be a fully faithful 1-cell, and let T be a j-monad.
Suppose that T ;j′ admits an algebra-object. Then a slice · → E may be equipped with an algebra-object structure
for T if and only if there is a strict 2-pullback square in K as follows.

· Alg(T ; j′)

E E′
j′

uT ;j′

⌟

In particular, when an algebra-object for T exists, the following square is a strict 2-pullback in K.

Alg(T ) Alg(T ; j′)

E E′
j′

uT

⟨⟩T ;j′

uT ;j′

Proof. Observe first that, assuming the algebra-object exists, the bottom square commutes by the universal
property of Alg(T ; j′). We will show that the algebra-object satisfies the same universal property as the
2-pullback.

Recall that 1-cells into an algebra-object for T each comprise a 1-cell u : X → E with a 2-cell E(j, u)⇒
E(t, u). Given that j′ is fully faithful, this is equivalently a 2-cellE′(j′j, j′u)⇒ E′(j′t, j′u). Similarly, 1-cells
into an algebra-object for T ; j′ each comprise a 1-cell u′ : X ′ → E′ with a 2-cell E′(j′j, u′) ⇒ E′(j′t, u′)
satisfying the two axioms.

Now, 1-cells into the 2-pullback each comprise a 1-cell u : X → E and a 1-cell intoAlg(T ;j′) for which the
forgetful 1-cell u′ is equal to u ; j′: in other words, they are given by a 2-cell E′(j′j, j′u)⇒ E′(j′t, j′u). But
this is exactly the data for a 1-cell into an algebra-object forT , the axioms being satisfied by virtue of the axioms
for the algebra-object for T ; j′. Therefore, 1-cells into the 2-pullback are in bijection with 1-cells into Alg(T ),
which is easily seen to be natural, so that the two objects satisfy the same 1-categorical universal property.
Furthermore, according to the same reasoning, a 2-cell between 1-cells into the 2-pullback are in bijection with
left-module morphisms for T , establishing the mutual satisfaction of the 2-categorical university property, and
hence an isomorphism between the algebra-object Alg(T ) and the apex of the specified 2-pullback.

It is often the case that one is interested in 2-categories admitting certain bicategorical structure (for in-
stance, pseudolimits rather than 2-limits), and in this light the previous result may seem too strict. Happily,
this may be rectified. First, we shall need the following result (cf. [BG19, Example 3]).

Lemma 5.5.3. Let j : A → E be a 1-cell and let T be a j-monad admitting an algebra-object. The forgetful
1-cell uT : Alg(T )→ E is a discrete isofibration (Definition 2.3.4).

Proof. Consider a triangle as follows, commutative up to isomorphism.

· Alg(T )

E

uT

x

e

∼=
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By the universal property of Alg(T ), the 1-cell x : · → Alg(T ) specifies a left-module for T by postcomposi-
tion with uT , with a 2-cell E(j, uTx)⇒ E(t, utx). This induces a 2-cell

E(j, e) ∼= E(j, uTx)⇒ E(t, utx) ∼= E(t, e)

equipping e : · → E with a left-module structure for T , and hence a 1-cell · → Alg(T ) by the universal
property of the latter, making the lower triangle in the following commute.

· Alg(T )

E

uT

x

e

∼=

Uniqueness of this lifting follows again from the universal property.

Corollary 5.5.4. The strict 2-pullback of Theorem 5.5.2 is a pseudopullback.

Proof. Since uT ;nj
is relatively monadic, it is a discrete isofibration by Lemma 5.5.3, hence has invertible-path

lifting. The result then follows by [JS93, Corollary 1].

Furthermore, when Alg(T ; j′) is Eilenberg–Moore, so is Alg(T ).

Proposition 5.5.5. Let j : A → E be a 1-cell, let j′ : E → E′ be a dense fully faithful 1-cell, and let T be a
j-monad. Suppose that T admits an algebra-object, that T ;j′ admit an Eilenberg–Moore algebra-object, and that
the mediating morphism 〈〉T ;j′ is fully faithful. Then fT ja uT if and only if fT ;j′ j;j′a uT ;j′ .

Proof. We have:

Alg(T )(fT , 1) ∼= EM(T ; j′)(〈〉T ;j′fT , 〈〉T ;j′)

∼= EM(T ; j′)(fT ;j′ , 〈〉T ;j′)

∼= E′(j′j, uT ;j′〈〉T ;j′)

∼= E′(j′j, j′uT )
∼= E(j, uT )

To demonstrate the value of Theorem 5.5.2, it will be useful henceforth to impose a stronger condition
on our proarrow equipment, as described in Section 5.1.1, asking for it to correspond to a lax idempotent
pseudomonad (P, µ,よ): this is in particular the case for 2-categories of enriched categories. In this case,
given a dense 1-cell j : A → E in K, there is a canonical fully faithful 1-cell from E given by the nerve
nj : E → PA. We can then apply Theorem 5.5.2 taking j′ = nj .

The following generalises [Str74a, Theorem 35], [SW78, Proposition 22], and [Woo85, Proposition 7] from
monads to relative monads.

Corollary 5.5.6. Let (P,よ) be a locally fully faithful lax idempotent pseudomonad on K and take
(−)∗ : AdmP(K)→ N to be the proarrow equipment induced by the Kleisli inclusion of P . Let j : A→ E be a
dense 1-cell in K with P-small domain, and let T be a j-monad. Suppose that T ; nj admits an algebra-object.
Then a slice · → E is the algebra-object for T if and only if there is a strict 2-pullback square as follows.

· Alg(T ; nj)

E PAnj

uT ;nj
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Proof. Since j is dense, nj is fully faithful, from which the result follows by Theorem 5.5.2.

Crucially, our proof of this theorem illuminates the nature of this characterisation, originally observed in
the case of non-relative monads on categories by Linton [Lin69a, Observation 1.1]. Namely, this is a special
case of a more general theorem, which is only visible when viewed from the perspective of relative monads
(even when we are only concerned with the case j = 1E).

Remark 5.5.7. Though our characterisation in Corollary 5.5.6 of the category of algebras for a monad reduces
to Linton’s characterisation, it is not entirely direct. In particular, we must observe that in many 2-categories,
given a monad T , we have a commutative triangle:

EM(T ;よA) P(Kl(T ))

PA
uT ;nj

≃

kT
∗

This holds in particular forK =W-Cat, forW a locally cocomplete bicategory, because Kleisli objects coincide
with Eilenberg–Moore objects in W-Prof [CKW87, Proposition 3.3], and EM(T ;よA) ' EM(P(T )) and
P(Kl(T )) ' Kl(P(T )), which are Eilenberg–Moore and Kleisli objects for the monad P(T ) inW-Prof. We
leave the study of when this property holds more generally for future work, though note it is sufficient to
assume that the proarrow equipment satisfies Wood’s Axiom 5 [Woo85].

A practicable consequence of this characterisation is a sufficient condition for the existence of algebra-
objects for relative monads, which is frequently easily verifiable. However, we must first make note that the
equivalence between realisable relative monads and j-ary monads (Proposition 5.4.3) takes on a particularly
elegant form when j is the unit of a lax idempotent pseudomonad.

Theorem 5.5.8. Let (P,よ) be a locally fully faithful lax idempotent pseudomonad onK and letA be a P-small
object of K. Take (−)∗ : AdmP(K) → N to be the proarrow equipment induced by the Kleisli inclusion of P .
Then a monad on PA isよA-ary if and only if it is P-cocontinuous.

Proof. By the universal property of P , P-cocontinuous 1-cells PA → PA are equivalently given by 1-cells
A→ PA, mediated by the adjoint equivalence induced by left extension.

KP [A,A] KP [PA,PA]
よA▷(−)

よA;(−)

≃

This adjoint equivalence lifts to an adjoint equivalence between P-cocontinuous monads on PA and よA-
monads.

RMnd(よA) MndP(PA)

KP [A,A] KP [PA,PA]
よA▷(−)

よA;(−)

よA▷(−)

よA;(−)

≃

≃

The proof is the same as that of [ACU15, Theorems 4.6 – 4.8], observing thatよA is well-behaved in the sense
of [ACU15, Definition 4.1]. Finally, this equivalence respects the process of taking algebras by the discussion
in [ACU15, §4.4].

In particular, when j is fully faithful and j′ = nj , we have j ; j′ ∼= よA, and hence (j ; j′)-monads are
equivalent to P-cocontinuous monads on PA.

Corollary 5.5.9. Every finitely 2-complete 2-category with a locally fully faithful lax idempotent pseudomonad
P admits Eilenberg–Moore algebra-objects for relativemonads with dense fully faithful roots andP-small domain.
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Proof. Every finitely 2-complete 2-category admits Eilenberg–Moore algebra-objects for monads [Gra74, §1,
7.12.4], fromwhich the result follows by Corollary 5.5.4 and Proposition 5.5.5, since uT ;nj

: Alg(T ;nj)→ PA
is monadic when j is fully faithful by the preceding remark.

We conclude this chapter by giving a representation theorem for relative monads, which will shed light on
several definitions arising previously in the literature. First, we have a converse to Proposition 5.5.1, stating
that every (j ; j′)-monad of the form t ; j′ is necessarily induced by postcomposition by j′.

Proposition 5.5.10. Let j : A → E and j′ : E → E′ be 1-cells in K, and suppose that j′ is fully faithful. The
image of RMnd(j) ↪→ RMnd(j ; j′) is the full subcategory spanned by (j ; j′)-monads whose underlying 1-cell
is of the form t ; j′ for a 1-cell t : A→ E.

Proof. Trivially, if T is a j-monad, then its image under (−) ; j′ is given by t ; j′, and is hence of the desired
form. Conversely, let T ′ = (t ; j′, η, (−)†) be a (j ; j′)-monad. Since j′ is fully faithful, the unit η : j ; j′ ⇒
t ; j′ determines a 2-cell j ⇒ t. Similarly, the extension 2-cell † : E′(j′j, k′t) ⇒ E′(j′t, j′t) determines an
extension 2-cell

E(j, t)
j′==⇒ E′(j′j, j′t)

†′−→ E′(j′t, j′t)
j′

−1

=====⇒ E(t, t)

Hence T ′ induces a j-monad, to which applying (−) ; j′ produces T ′, exhibiting T ′ as being in the image of
(−) ; j′.

As before, in the presence of a lax idempotent pseudomonad, we can take j′ to be the canonical fully
faithful 1-cell given by the nerve nj , assuming that j is dense. This permits us to represent j-monads fully
faithfully as certain monads in the Kleisli bicategory ofP . We will relate this to various results in the literature
in Chapter 7.

Corollary 5.5.11. Let j : A → E be a dense fully faithful 1-cell in K with P-small domain. RMnd(j) is
isomorphic to the full subcategory ofMon(KP [A,A]) spanned by monoids whose underlying 1-cell is of the form
t ; nj for t : A→ E.

Proof. Since j is dense, nj is fully faithful, and we may consider the embedding RMnd(j) ↪→ RMnd(j ; nj).
Since j is fully faithful, j ; nj ∼=よA, and so the embedding is given by

RMnd(j) ↪→ RMnd(よA) ' MndP(PA) ' Mon(KP [PA,PA]) ' Mon(KP [A,A])

by Theorem 5.5.8. The result follows by Proposition 5.5.10.
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Chapter 6

The formal monad–theory
correspondence

In this chapter, we will build upon the understanding of the monad–theory correspondence presented in Chap-
ter 3 to develop a monad–theory correspondence in an arbitrary 2-category with some minimal structure. The
primary objective is to provide a conceptual explanation for the existence of the correspondence inCAT: to do
so, we must necessarily abstract away from the concrete setting of categories, functors, and natural transfor-
mations, as we wish to avoid taking advantage of any of the phenomena that occur, so to speak, incidentally.
A consequence, and secondary objective, for such an understanding will be a framework for monad–theory
correspondences applicable in many 2-categories besides CAT: in the following chapter, we will show how
correspondences for enriched categories follow very simply from the results of this chapter. It is worth noting
that, while the motivation for the classical monad–theory correspondence is highly logical, serving to relate
two frameworks for universal algebra, the formal monad–theory correspondence may essentially be seen as a
contribution to the formal theory of monads: in essence, the presence of a well-behaved factorisation system
on a 2-category will be shown to be greatly beneficial to the study of Kleisli objects, and recovers many of
the properties with which we are familiar in the study of monads in CAT. We expect these observations will
consequently be valuable from a purely categorical perspective in addition to the classical logical perspective.

Let us begin by outlining the conceptual explanation for the existence of monad–theory correspondences,
which will act as a guide for the rest of the chapter. In the classical setting (namely, in the context of the
2-category CAT), every relative monad is induced canonically by two relative adjunctions: the Kleisli reso-
lution, and the Eilenberg–Moore resolution [ACU15, Theorem 2.12]. This generalises the situation, known
since the early years of category theory, to hold for monads [EM65; Kle65; Mar66]. Consequently, there are
bijections between relative monads, Kleisli resolutions (namely, adjunctions that are initial amongst the ad-
junctions realising a given relative monad), and Eilenberg–Moore resolutions (namely, adjunctions that are
terminal amongst the adjunctions realising a given relative monad). Furthermore, it is possible to characterise
those resolutions that are initial solely in terms of their left relative adjoint: they are precisely the identity-
on-objects left relative adjoints. Thus the bijection between relative monads and Kleisli resolutions may be
rephrased as a bijection between relative monads and identity-on-objects functors equipped with right rel-
ative adjoints. In some cases, such as when j is the inclusion of a category into its cocompletion under a
class of weights, the condition to be a left relative adjoint is equivalent to a colimit-preservation property,
and j-relative monads furthermore extend to certain colimit-preserving monads: in this way the classical
monad–theory correspondence is recovered.

As a category theorist, one ought seldom to be satisfied by bijections; happily, the bijection above may be
extended to an equivalence of categories. For a dense functor j : A→ E, functors between Kleisli categories
for j-relative monads that commute with the Kleisli inclusions correspond to relative monad morphisms,
and vice versa. These are precisely the classical morphisms of algebraic theories. For every dense functor
j, therefore, there is an equivalence of categories Th(j) ' RMnd(j), and for those j for which j-monads
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extend to monads, j-monad morphisms also extend to monad morphisms.
In the setting of a 2-category, the situation is more subtle, but also more illuminating. On one hand, several

of the properties of CAT that we rely on for the classical monad–theory correspondence, such as the fact that
every monad is induced by an adjunction, do not hold in arbitrary 2-categories. On the other hand, these
same obstructions force us to understand precisely which assumptions are necessary for the existence of the
theory, and why they are the appropriate assumptions to make.

The first obstruction we encounter when approaching a formal correspondence, discussed in more detail
in the previous chapter, is fundamental: unlike monads, it is not clear how to define the concept of relative
monad in an arbitrary 2-category. The difficulty lies in the extension operator for a relative monad, which in
CAT maps morphisms jx → ty to morphisms tx → ty. To define an extension operator, we must assume
some setting for formal category theory: in our case, a proarrow equipment.

Having assumed a proarrow equipment structure, and defined relative monads in our 2-category K, we
must then assume, for a given 1-cell j : A → E, that initial resolutions for j-monads exist. In this case, we
have a correspondence between initial resolutions and relative monads, essentially by definition. We wish
to characterise initial resolutions in terms of their left relative adjoints. Recall that, in CAT, this property
was given by being an bijective-on-objects functor. It is well-known that bijective-on-objects functors form
the left-class of an orthogonal factorisation system on CAT, and one might suspect that an orthogonal fac-
torisation system may be needed. This is certainly not a novel assumption: for instance, the proto-theories of
Avery [Ave17, Definition 6.1.2] are precisely 1-cells in the left-class of an orthogonal factorisation system on
(the underlying 1-category of) a 2-category. However, it is clear that not any orthogonal factorisation system
will do: for instance, CAT has many orthogonal factorisation systems that do not classify Kleisli inclusions.
Our contribution in this regard is an additional assumption on the orthogonal factorisation system that we
call resoluteness (after its relation to resolutions of relative monads). We shall show that 1-cells in the left-class
of a resolute factorisation system characterise initial resolutions.

The next step is to extend the correspondence between initial resolutions and relative monads to an equiv-
alence of categories. For this, we need a stronger assumption than having initial resolutions for j-monads,
which does not suffice to ensure that relative monad morphisms are given by morphisms between their Kleisli
objects: we need K to admit Kleisli constructions (Definition 5.2.17) to ensure that this relationship is functo-
rial.

Finally, we must have a way to extend relative monads to monads. This has already been discussed in
Section 5.4, and we shall not need to dwell on it further here: the results of the previous chapter will be
directly instantiated in our concrete examples.

Remark 6.0.1. Upon reading the previous paragraphs, the reader may have wondered, since relative monads
are in bijection with Eilenberg–Moore resolutions as well as Kleisli resolutions, whether there might be an
analogous monad correspondence from that, dual, point of view. This is indeed the case. Just as we can
characterise initial resolutions as left relative adjoint identity-on-objects functors, so too can we characterise
terminal resolutions as right relative adjoint functors creating certain colimits. In the setting of monads, this is
a consequence of Beck’s monadicity theorem [Bec66]. In the setting of relative monads, an adaption of Paré’s
monadicity theorem [Par71] is more appropriate [Ark21]. While such a development is possible in a formal
context, it is tangential to the subject of this thesis, and we shall leave the details for exposition elsewhere.

6.1 Resolute factorisation systems
In this subsection, we introduce a kind of orthogonal factorisation system that permits the characterisa-
tion (Section 6.1.1) and construction (Section 6.1.2) of those relative adjunctions that are opmonadic. There
are thus two aspects of such factorisation systems: essentially, the former ensures that the 1-cells in the left
class are well-behaved, and the latter ensures that the 1-cells in the right-class are well-behaved.
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6.1.1 Hom-action factorisations
We shall require the 1-cells in the left class of our factorisation system to be sufficiently like identity-on-objects
functors. The following definitions facilitate this intuition.

Definition 6.1.1. Let k : A → K and ` : A → B be 1-cells in K. A hom-action from k to ` is a 2-cell
δ : K(k, k)⇒ B(`, `) such that the following diagrams commute:

A(1, 1) K(k, k)

B(`, `)

k

δ
ℓ

K(k, k)�K(k, k) K(k, k)

B(`, `)�B(`, `) B(`, `)

δ⊙δ

µℓ

µk

δ

We make note of the resemblance of our definition of hom-action to the extraordinary natural transforma-
tions of [SW78, p. 369], but shall not attempt to make a formal comparison here.

Definition 6.1.2. A 1-cell k : A → K factors hom-actions if, for every 1-cell ` : A → B and hom-action δ
from k to `, there is a unique 1-cell d : K → B such that k ; d = ` and δ = d.

1-cells that factor hom-actions capture a formal notion of identity-on-objects functor: intuitively, such a
1-cell ensures that every hom-action therefrom is induced by postcomposition.

Lemma 6.1.3. Let k ja v be a j-adjunction for which k factors hom-objects. Denote by T the j-monad induced
thereby.

K

A E

k v

j

⊣

B

A E

ℓ r

j

⊣

For any resolution ` ja r of T , there is a unique morphism of resolutions from k ja v to ` ja r. Thus k ja v is
initial in Res(T ).

Proof. Let ` ja r be a resolution of T . We may form a 2-cell

δ : K(k, k)
♯k===⇒ E(j, k ; v) = E(j, ` ; r)

♭ℓ==⇒ B(`, `) (6.1)

which satisfies the conditions to be a hom-action, since both j-adjunctions have the same unit and extension.
Therefore, there is a unique d : K → B such that k ;d = ` and d = δ. To see that d commutes with the relative
right adjoints, observe that k ; d ; r = ` ; r = k ; v and

d ; r = ]k ; [` ; r (d = δ)
= ]k ; [k ; v (resolutions of same j-monad)
= v (] = [−1)

so that, since k factors hom-actions, we have d ; r = v. Thus d : K → B forms a morphism of resolutions
from k ja v to ` ja r.

Conversely, assume there is a morphism of resolutions d : K → B from k ja v to ` ja r. We have

d ; ]` = d ; r ; E(τ, ` ; r) (definition of E(τ, ` ; r))
= v ; E(τ, ` ; r) (d ; r = v)
= v ; E(τ, k ; v) (resolutions of same j-monad)
= ]k (definition of E(τ, k ; v))

so that d = ]k ; [` and hence, since k factors hom-actions, dmust be the unique such morphism of resolutions.
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6.1.2 Resolute factorisations
We shall require the 1-cells in the right class of our factorisation system to be sufficiently like fully faithful
functors, though in practice we only need a slightly weaker concept than fully faithful 1-cells. We shall first
need the concept of a resolute composable pair of 1-cells.

Definition 6.1.4. Let `1 : A→ L and `2 : L→ B be 1-cells in K. The pair (`1, `2) is resolute if

L(`1, 1)
ℓ2L(ℓ1,1)==========⇒ B(`2`1, `2)

is invertible, so that there is a canonical relative adjunction `1 ℓ1;ℓ2a `2.

Resoluteness of a pair (`1, `2) may be considered a weakening of full faithfulness, where we only require
full faithfulness for 2-cells whose domain is of the form `1(−). In particular, it holds whenever `2 is fully
faithful (and, in practice, this is how our examples arise).

Lemma 6.1.5. Let ` = `1 ; `2 in K, and suppose that `2 is fully faithful. Then (`1, `2) is resolute.

Proof. Invertibility of `2L(`1, 1) follows immediately from invertibility of `2, which is full faithfulness of
`2.

The motivating property of resolute factorisations is the following, demonstrating that resolute factorisa-
tion preserves resolutions in a suitable sense, allowing us to transfer the right cell of a factorisation of a left
relative adjoint from the left relative adjoint to the right relative adjoint, without altering the induced relative
monad.

Proposition 6.1.6. Let `1 ; `2 ja r be a j-adjunction. The following are equivalent.
1. `1 ja `2 ; r; this j-adjunction induces the same j-monad as `1 ; `2 ja r; and `2 forms a morphism of

resolutions therebetween.

2. (`1, `2) is resolute.

L B

A E
j

rℓℓ1

ℓ2

⊣
=⇒

L

A E
j

ℓ2;rℓ1

⊣

Proof. (1 =⇒ 2) Since `2 is a morphism of resolutions, we have the following,

L(`1, 1) B(`2`1, `2)

E(j, r)

∼=

ℓ2L(ℓ1,1)

∼=

exhibiting (`1, `2) as resolute.
(2 =⇒ 1) Since B(`2`1, 1) ∼= E(j, r), it follows that B(`2`1, `2) ∼= E(j, r`2). Hence L(`1, 1) ∼= E(j, r`2)

if and only if L(`1, 1) ∼= B(`2`1, `2), which holds in particular if (`1, `2) is resolute. The j-monad induced by
`1 ja `2 ; r has underlying 1-cell given by `1 ; (`2 ; r) = (`1 ; `2) ; r = ` ; r; the units coincide directly by
resoluteness; and the operators coincide by commutativity of the following diagram.

E(j, r`2`1) L(`1, `1) E(r`2`1, r`2`1)

B(`2`1, `2`1)

♭
ℓ2 r

♭′ ℓ2;r

Finally, that `2 is a morphism of resolutions follows directly from resoluteness.
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Definition 6.1.7. A resolute factorisation system on a proarrow equipment (−)∗ : K → N is an orthogonal
factorisation system (E ,M) on the underlying 1-category of K for which every E-cell factors hom-actions
and for which, for every factorisation f = e ;m, the pair (e,m) is resolute.

The informal slogan is that equipping a proarrow equipmentK with a resolute factorisation system means
that the formal theory of (relative) monads in K will behave like that of CAT: this idea will be justified in
what follows.

In any proarrow equipment with a resolute factorisation system, we can characterise the relative op-
monadic 1-cells in terms of the left-class of the factorisation system; this is the theorem that motivates the
definition of resoluteness.

Theorem 6.1.8 (Relative opmonadicity). Let ` ja r be a j-adjunction in a proarrow equipment with a resolute
factorisation system (E ,M). Then ` ja r is j-opmonadic (Definition 5.2.11) if and only if ` is an E-cell.

Proof. Denote by T the j-monad induced by ` ja r and by k ; i = ` the resolute factorisation of `. By
Proposition 6.1.6, k ja i ; r, and this j-adjunction is opmonadic by Lemma 6.1.3. Therefore if ` ja r is j-
opmonadic, i is an isomorphism, so that ` is an E-cell since E-cells are closed under isomorphism. Conversely,
if ` is an E-cell, then so is i via the cancellation property for E-cells. Therefore, i is both an E-cell and an
M-cell, and hence an isomorphism.

In this way, in any proarrow equipment with a resolute factorisation system, relative opmonadicity is a
property that depends only on the left relative adjoint `, and not the right relative adjoint r, or even the root
j. This means that if ` is the left relative adjoint of several relative adjunctions (with different right adjoints if
j is not dense, or different roots), the relative adjunctions will share a Kleisli object. Furthermore, in a certain
sense, the (E ,M)-factorisation of a 1-cell f that is not left relative adjoint may be thought of as constructing
what the Kleisli object would be, if f were left relative adjoint. This is the direct analogue of the full image in
CAT, which is obtained (up to isomorphism) by taking the (bijective-on-objects, fully faithful)-factorisation
of a functor.

It follows that, given a relative monad T in K, if T admits any resolution, it admits an initial resolution,
since we may always take the (E ,M)-factorisation of the left relative adjoint to obtain the initial resolution.

Corollary 6.1.9. Let ` ja r be a resolution of a j-monad T , and let k ; i ∼= ` be the (E ,M)-factorisation of `.
Then k ja i ; r is the initial resolution of T .

Proof. By Proposition 6.1.6, taking the (E ,M)-factorisation of ` gives a relative adjunction k ja i ; r with the
same resolution, and this is furthermore j-opmonadic by Theorem 6.1.8 since k is an E-cell.

This process is functorial in a suitable sense, as exhibited by the following proposition.

Proposition 6.1.10. Let K be a 2-category with a resolute factorisation system (E ,M). Suppose that
� : RAdjr(j) → RMnd(j) has a section, and that the image of an invertible relative monad morphism under
the section is a strict right-morphism. Then K admits Kleisli constructions.

Proof. We shall show that the conditions of Lemma 5.2.18(ii) are satisfied. First, the existence of a section
implies that every j-monad has a resolution ` ja r, and hence an initial resolution by Corollary 6.1.9. It
furthermore implies that every j-monad morphism ϕ : T ⇒ T ′ induces a right-morphism of j-adjunctions
(b, ρ) : (` ja r)→ (`′ ja r′), for which �(` ja r) = T , �(`′ ja r′) = T ′, and �((b, ρ)) = ϕ.

B′

A B E
ℓ r

ℓ′
b

r′
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By orthogonality, we have a unique lift Kl(T ) → Kl(T ′), since kT is an E-cell and []T ′ is anM-cell by
Corollary 6.1.9.

A Kl(T )

Kl(T ′) B′
[]T ′

kT

kT ′ []T ;b

This lift is an E-cell, since kT ′ is, and induces a right-morphism of j-adjunctions from the right-morphism
(b, ρ).

Kl(T ′) B′

A Kl(T ) B E

b

r

r′

vT ′

vT

[]T ′

[]T

kT ′

kT

It remains to show that we have unique lifts. Let b : Kl(T )→ B be a 1-cell under A, and consider its (E ,M)-
factorisation b = e ;m. We have kT ; e ;m = `. The (E ,M)-factorisation of ` is therefore given by (kT ; e,m),
since kT is an E-cell. However, by Proposition 6.1.6 and Theorem 6.1.8 as before, this exhibits kT ; e as kT ′

andm as []T ′ . Therefore, the (E ,M)-factorisation of b provides a unique factorisation through Kl(T ′).

Kl(T ′)

Kl(T ) B

A

b

kT

e m

ℓ′

The result then follows by Lemma 5.2.18.

In particular, assuming the existence of Eilenberg–Moore objects, there is a canonical resolution from
which we may obtain the Kleisli resolution.

Corollary 6.1.11 (cf. [SW78, Proposition 24; Woo85, Proposition 6]). Let T be a j-monad for which there exists
an Eilenberg–Moore algebra-object. The resolute factorisation of fT : A → EM(T ) is the Kleisli inclusion of T .
Therefore, the unique morphism of resolutions Kl(T )→ EM(T ) is anM-cell.

Proof. Follows directly from Corollary 6.1.9.

OftenMwill comprise fully faithful 1-cells, inwhich case this establishes that Kleisli objects fully faithfully
embed into Eilenberg–Moore objects, as is known to be the case for K = CAT.

Remark 6.1.12. In [Str74a, p. 171], Street discusses the relationship between Kleisli and Eilenberg–Moore
categories. Observe that, in CAT, we may construct the Eilenberg–Moore category for a (relative) monad
from the Kleisli category via pullback (cf. Corollary 5.5.6 and Remark 5.5.7). Conversely, we may obtain the
Kleisli category from the Eilenberg–Moore category in two ways: either by taking the (bijective-on-objects,
fully faithful)-factorisation of fT , or (up to Cauchy completion) by identifying EM(T ;よA) ' P(Kl(T )).
Street does not have the formalisms in [Str74a] to recover either construction (though some attempts are
made on the former in [SW78]). We contend that the concept of resolute factorisation system finally gives
a fully satisfactory formalisation of the first of these constructions; see Remark 5.5.7 for a discussion of the
second.
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Note, however, that admitting algebra-objects is not sufficient to admit (functorial) Kleisli constructions in
the presence of a resolute factorisation system: though Kleisli objects will exist, it will not necessarily be the
case that every j-monad morphism is induced by a right-morphism of j-adjunctions1.

6.2 j-theories
Wemay define theories in any proarrow equipment with a resolute factorisation system: the definitionmirrors
that of a classical algebraic theory. We henceforth assume a proarrow equipment (−)∗ : K → N with a
resolute factorisation system (E ,M) on K.

Definition 6.2.1. Let j : A→ E be a dense 1-cell in K. A j-theory is a left j-adjoint E-cell. Denote by Th(j)
the full subcategory of the coslice category A/K spanned by j-theories. Explicitly, a morphism of j-theories
from k : A→ B to k′ : A→ B′ is a 1-cell b : B → B′ such that k ; b = k′.

We require j to be dense so that being left j-adjoint is a property, rather than structure. Without this
assumption, a theory would be given by a pair of 1-cells comprising the left and right relative adjoints; in this
sense, density is a necessity for a formal theory of theories. Since density is a necessary requirement also for
much of the theory of relative monads, this is not a particularly restrictive assumption.

The equivalence between j-theories and j-monads follows directly from the characterisation of relative
adjunctions in terms of their left adjoints for dense j, together with the characterisation of relative opmonadic-
ity.

Theorem 6.2.2. Let K be a 2-category with a resolute factorisation system (E ,M). Let j : A → E be a dense
1-cell for which K admits the construction of Kleisli objects. The categories of j-theories and of j-monads are
equivalent.

Th(j) ' RMnd(j)

Proof. By Corollary 5.2.19, the functor RMnd(j) → A/K is fully faithful. Hence, RMnd(j) is equivalent to
the full subcategory of A/K spanned by j-opmonadic 1-cells: by Theorem 6.1.8, these are precisely the left
j-adjoint E-cells, i.e. the j-theories.

In absolute generality, this is the most precise “monad–theory correspondence” for which one could hope:
which is to say, in general, theories correspond to relative monads rather than monads. In other words, one
ought really to think of theories as being relative monads. We believe the traditional desire for monad–theory
correspondences is caused by the misunderstanding that theories correspond to monads, rather than a true
desire to recover monads rather than relative monads. Of course, this is an entirely natural misunderstand-
ing, given that the modern formulation of relative monad is a recent development [ACU10], and that Diers’s
formulation [Die75] has been overlooked until now.

That said, in some cases, we really are interested in monads: for instance, it is true that monads are more
convenient objects of study than relative monads. In addition, we – meaning the author and readers of this
thesis – are necessarily interested in monads, because we wish to demonstrate that monad–theory correspon-
dences arise from relative monad–theory correspondences. To that end, we note that when the root j is dense,
and K admits pointwise left extensions therealong, Corollary 5.4.8 applies, and we have an equivalence

Th(j) ' RMnd(j) ' Mndj(E)

However, we wish to emphasise that, in general, we cannot make any comparison between relative monads
and monads, because it is not the case that every relative monad is realisable.

1It seems unlikely that even having a functorial construction of Eilenberg–Moore objects would be sufficient, since morphisms of
Eilenberg–Moore objects are classified by left-morphisms of j-adjunctions rather than right-morphisms.
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Chapter 7

The enriched monad–theory
correspondence

In this chapter, we justify the formal development of the monad–theory correspondence of the previous chap-
ter by demonstrating that we recover all knownmonad–theory correspondences for enriched and internal cate-
gories through simple instantiations of the general theory. The one setting formonad–theory correspondences
in the literature that we do not recover is that of monads on (∞, 1)-categories (cf. [Kos21; HM21]): to express
correspondences at this generality would likely require a theory of relative monads in (∞, 2)-categories1. We
begin by giving a short history of the monad–theory correspondence. We then discuss the application of our
general theory to enriched categories, for concreteness taking a locally bicomplete closed bicategory as the
base of enrichment, showing that, in many cases, we may easily prove that the necessary assumptions for the
monad–theory correspondence are satisfied via general existence theorems. In the final sections, we show that
the enriched monad–theory correspondences of Lucyshyn-Wright [Luc16] and of Bourke and Garner [BG19],
which are the twomost general correspondences appearing in the literature, are thereby subsumed, and briefly
outline how the internal monad–theory correspondence of Johnstone and Wraith [JW78] may be seen as a
special case of the enriched setting.

7.1 A short history of the monad–theory correspondence
The monad–theory correspondence has a rich history spanning over half a century. We shall give a brief
overview of the developments in this area, both to put ourwork in context, and to establish the key insights that
have led to the modern understanding of the correspondence. In particular, significant work in the early years
of category theory has often been overlooked due to obscurity, and it is useful to have a survey explicating their
contributions. We shall focus primarily on progress directly relevant to the monad–theory correspondence,
though this line of research may be seen to fit into a wider context of developments in categorical logic and
algebra. For ease of comprehension, we use notation consistent with our usage throughout the thesis, rather
than the notations used in the original sources.

The story begins with the introduction of algebraic theories: coproduct-preserving bijective-on-objects
functors from F(1), the free category with finite strict coproducts on a single object, with (locally-)small
codomain. First appearing in Lawvere’s 1963 thesis [Law63], algebraic theories were intended to serve as a
presentation-invariant axiomatisation of finitary, monosorted universal algebras, as introduced by
Birkhoff [Bir35].

Contemporaneously, Hall in 1965 introduced abstract clones [Coh65, Exercise III.3.3], intended to capture
the same universal algebraic structures as algebraic theories, modulo a caveat as to whether nullary operations

1We note that it may be possible to use 2-categorical methods for the special case (∞, 1)-Cat, such as in the framework of Riehl and
Verity [RV22], but this too requires a development of relative (∞, 1)-monads that is orthogonal to our interests here.
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are permitted. Assuming one permits nullary operations (which is the natural choice), the categories of alge-
braic theories and of abstract clones are concretely isomorphic, and their tight connection was appreciated
essentially immediately [Lin66b]. Abstract clones play an important role in themonad–theory correspondence
and we shall return to them shortly.

In 1966, Linton was motivated to extend the algebraic theories of Lawvere from finitary operations to
infinitary operations, following an analogous development of Słomiński [Sło59] in the classical, set-theoretic
setting. Linton’s varietal equational theories are product-preserving bijective-on-objects functors from Setop,
the free category with small products on a single object, with locally-small codomain. Such functors are
equivalently the bijective-on-objects right-adjoint functors from Setop with locally-small codomain, and in
turn are in bijection with monads2 on Set. Furthermore, in a preliminary report made in the same year,
Linton observed that this bijection could be extended to an equivalence of categories [Lin66c]. Having made
this observation, albeit without proof, Linton suggested that one could define a theory over any categoryE as a
bijective-on-objects right-adjoint functor fromEop with locally-small codomain: such theories are in bijection
with monads on E [Lin66b, §6]. It is this observation that is the origin of the monad–theory correspondence.
Note that Linton’s correspondence takes place in the setting of infinitary algebraic theories, rather than the
subtler setting of finitary algebraic theories; the relation to finitary algebraic theories would not be explicated
for another decade.

Linton continued this study of algebraic theories in a 1969 tour de force dedicated to a general investi-
gation of the structure–semantics adjunction [Lin69a], a process devised by Lawvere to pass between alge-
braic theories and their categories of algebras [Law63, Theorem III.1.2]. Fixing a functor j : A → E between
locally-small categories, Linton developed an adjunction between the opposite of the category of bijective-on-
objects coslices over Aop (there called A-clones), and the category of slices over E [Lin69a, Theorem 4.1]. For
j = (F(1) ' FinSet ↪→ Set), this essentially recovers Lawvere’s original structure–semantics adjunction; for
a set S, and j = (F(S) ' FinSetSf ↪→ SetS), the structure–semantics adjunction of S-sorted algebraic theo-
ries developed by Bénabou [Bén68] (where FinSetSf is the subcategory of FinSetS spanned by S-indexed sets
with finite support; equivalently, the free category with finite coproducts on S); and for j = 1Set, a structure–
semantics adjunction for infinitary algebraic theories. Initially, no adjointness or limit-preservation conditions
were assumed of the coslices. However, Linton went on to consider bijective-on-objects left-adjoint functors
from E (i.e. for which j = 1E) and proved a monad correspondence in this setting [Lin69a, Lemma 10.2],
which was shown to fit naturally into the general structure–semantics adjunction [Lin69a, Theorem 10.1].
There is one further contribution of Linton’s work that is crucial for the later discussion: the observation that
the Eilenberg–Moore category for a monad can be characterised in terms of a subcategory of presheaves on
the Kleisli category. If T is a monad on a small categoryE, then the following square forms a pullback [Lin69a,
Observation 1.1], where we denote by kT : E → Kl(T ) the Kleisli inclusion, by uT : EM(T ) → E the Eilen-
berg–Moore forgetful functor, and byよE : E → [Eop, Set] the Yoneda embedding.

EM(T ) [Kl(T )op, Set]

E [Eop, Set]
よE

uT [kT
op,Set]

⌟ (7.1)

The importance of this characterisation to later monad–theory correspondences will be discussed shortly.
Linton worked at the level of generality of [Lin69a] only in the unenriched setting; a definition of fini-

tary V-theory for V a cartesian-closed category appeared briefly in a contemporaneous paper of Day [Day70,
Example 4.3], but the theory was not developed.

The history of the monad–theory correspondence is replete with developments that have since been for-
gotten or overlooked. One of the earliest examples is the device-theoretic approach to universal algebra, due
to Walters [Wal69; Wal70]. In a 1969 paper, Walters defines the notion of device and its algebras [Wal69, §1],
intended essentially as an alternative to monads and their algebras. Through a modern lens, a device captures
exactly the notion of j-relative monad (cf. [ACU10]), for j : A→ E an injective-on-objects functor. The main

2The reader desiring to study these references should be aware that in Linton’s papers, and those of contemporaries, the term triple
is used for what is now known by monad.
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theorem of [Wal69] is a relationship between (the categories of algebras for) devices over Set and varietal
categories, i.e. the category of algebras for a finitary monosorted universal algebra, which is reminiscent of
Linton’s earlier characterisation of the infinitary varietal categories as the categories monadic over Set. The
definition of device was generalised the following year in Walters’s thesis to permit j : A→ E to be an arbi-
trary functor [Wal70, Definitions 1.1.1, 1.1.3], and devices were further studied, Walters providing universal
properties for their Kleisli and Eilenberg–Moore categories (though the relationship with relative adjunctions
was not not observed), and establishing various properties of the categories of algebras for a device [Wal70].
Though devices provide an early account of relative monads, this has not previously been appreciated, with
modern references to Walters’s work acknowledging only the non-relative aspects (cf. [MW12, §1]).

In 1970, in the setting of enrichment in V a complete well-powered closed symmetric monoidal category,
Dubuc generalised the enriched structure–semantics adjunction of [Lin69b] to slices u : X → E that are not
necessarily right-adjoint, but admit codensity monads3 [Dub70b] (see also [Dub70a, Chapter II]). In particular,
every right-adjoint functor admits a codensity monad, and so Linton’s setting is recovered. Dubuc also gave a
definition of V-theory, which is an identity-on-objects power-preserving V-functor from V . A monad–theory
correspondence follows as a consequence of the structure–semantics adjunction [Dub70b, Theorem III]. For
a modern reader, Dubuc’s theorem is the first that is unambiguously a monad–theory correspondence; in
contrast, Linton’s presentation requires some work to interpret this way, since the relationship between right-
adjointness and limit-preservation is left implicit. It should be noted that Dubuc considers primarilyV-monads
on V , rather than on arbitrary V-categories, though the appropriate generalisation of V-theories to identity-
on-objects right-adjoint functors from arbitrary V-categories is outlined [Dub70b, §6].

A profunctorial perspective on the structure–semantics adjunction was developed in 1971 by
Thiébaud [Thi71], who showed that the A-clones of Linton are the same as monads on A in Prof, the
bicategory of profunctors [Thi71, Proposition II.1.5] (cf. [Jus68, p. 6.22]). For the most part, Thiébaud’s
treatment is orthogonal to the consideration of the monad–theory correspondence; however, the connection
with profunctors will provide helpful insight.

Up to this point, monad–theory correspondences had been considered only for arbitrary monads; there
was consequently no such correspondence for classical, finitary algebraic theories. This may seem surprising
in light of Linton’s development of the structure–semantics adjunction relative to a functor j : A→ E, which
in particular captured finitary algebraic theories when j = (FinSet ↪→ Set), but less surprising in light of the
general unawareness at that time of an appropriate generalisation of monad to j-relative monad. However,
in 1968, Ulmer [Ulm68] had introduced the notion of j-relative adjunction: a pair of functors ` : A → B
and r : B → E satisfying B(`x, y) ∼= E(jx, ry) natural in x ∈ A and y ∈ B. (Notably, Ulmer mentions in a
footnote that Linton appreciated there is a connectionwith algebraic theories, though this is never expounded.)
In 1974, Diers made use of relative adjunctions to define the notion of algebraic j-theory for a dense fully
faithful functor j : A → E [Die74]. An algebraic j-theory is an identity-on-objects left- j-relative adjoint
functor k : A → B [Die74, Définition 4.1.0]. Following Linton [Lin69a, §5], Diers defined the algebras for
a theory as a pullback, which was directly inspired by the pullback characterisation of the Eilenberg–Moore
category for a monad.

Alg(k) [Bop, Set]

E [Aop, Set]

[kop,Set]

Nj

uk

⌟ (7.2)

In particular, for j = (FinSet ↪→ Set), one recovers finitary algebraic theories as the algebraic j-theories; for
j = (FinSetSf ↪→ SetS), one recovers S-sorted finitary algebraic theories; and for j = 1Set, one recovers
infinitary algebraic theories [Die74, Exemple 4.1.1].

The following year, Diers defined a notion of j-relative monad, necessary to establish a refinement of the
monad–theory correspondence to algebraic j-theories [Die75]. For j : A → E a dense fully faithful functor,
Diers defined a j-monad to be a triple T = (t, η, µ), where t : A → E is a functor, η : j ⇒ t is a natu-
ral transformation, and µ : E(j−, t−) ◦ E(j−, t−) → E(j−, t−) is a 2-cell in Prof, forming a monad on

3Codensity monads are sometimes referred to as monadic completions [Man03, Definition 3.18], as they are a universal solution to
constructing a monad from a functor.
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A in Prof [Die75, Définitions 1.0]. To justify the definition, Diers established an equivalence between alge-
braic j-theories and j-monads, in particular establishing that finitary algebraic theories were equivalent to
(FinSet ↪→ Set)-monads. This may be seen as a relative monad–theory correspondence. Diers also consid-
ered conditions for the category of algebras for a j-monad to be equivalent to the category of algebras for
a non-relative monad, from which one can deduce the monad–theory correspondence for finitary algebraic
theories [Die75, Théorème 3.4]. Diers’s work on algebraic j-theories and j-monads already contains the es-
sential ingredients for a general monad–theory correspondence subsuming later correspondences, at least in
the unenriched setting. However, the work has been sadly overlooked, though algebraic j-theories appear in
a handful of contemporary papers [Die76; Wis76; Day77; BD77].

In 1976, Manes introduced an alternative presentation of monad inspired by the definition of Kleisli cat-
egory [Man76, Exercise 1.3.12]. Though it was not observed until later (cf. [MW12, §1]), Manes’s algebraic
theories in extension form (called Kleisli triples in [Mog91, Definition 1.2] and monads in extension form in
[Man03, Definition 2.13]) are essentially the same as the full devices of Walters [Wal70], or monads relative to
the identity functor (cf. [Wal70, Theorem 1.4.1]).

Linton and Diers were not the only ones to appreciate the importance of relative adjunctions to theories.
Recall that every adjunction gives rise to a monad, and to every monad T we may associate two canonical
adjunctions inducing T : the Kleisli and Eilenberg–Moore adjunctions, which are respectively initial and termi-
nal [Kle65; EM65; Mar66]. In this way, wemay reason about amonad in terms of its Kleisli or Eilenberg–Moore
adjunction, and furthermore could do so even without having a definition of monad. Analogously, it would be
plausible to imagine that one might reason about a notion of relative monad purely through universal relative
adjunctions. This was the starting point for the 1977 thesis of Lee [Lee77], whose motivation was to capture
finitary algebraic theories using monadic techniques. Lee’s work is independent of Diers’s, and there is a sub-
stantial overlap in their results. For instance, Lee defines Kleisli and Eilenberg–Moore relative adjunctions,
and proves a relative monadicity theorem, but does not attempt to define a notion of relative monad. Instead,
Lee observes that every j-relative adjunction, for j : A → E, induces a cocontinuous monad on [Eop, Set],
and this acts as a surrogate for the hypothetical notion of relative monad; this observation is strongly related
to the work of Thiébaud and Diers as we will explain later. Unfortunately, the work of Lee has also been
overlooked.

Finitary enriched algebraic theories were first studied by Gray [Gra75] in 1975, who was motivated pri-
marily by Cat-enrichment (cf. [Gra73]). Gray’s setting was that of enrichment in a bicomplete closed sym-
metric monoidal category V (frequently further assumed cartesian-closed). While the precise definition of
the V-algebraic theories ibid. is somewhat involved, they are in particular bijective-on-objects V-functors pre-
serving finite coproducts, as with Lawvere’s original definition. Gray considered several aspects of the theory
of algebraic theories, including a structure–semantics adjunction, but did not consider the relationship with
V-enriched monads.

The early 1970s saw the introduction of (elementary) topos theory and it became popular to understand
categorical logic from this foundational perspective [Joh77]. Algebraic theories were no exception, and in
1978 Johnstone and Wraith produced an extensive study of finitary and infinitary algebraic theories internal
to a topos E with a natural numbers object [JW78]. In particular, the authors showed that finitary algebraic
theories internal to E corresponded to monads locally-internal to E [JW78, Corollary 7.6]. This is the first
example of a monad–theory correspondence in a setting other than enriched categories (though we will later
see how (locally-)internal categories may be seen as enriched categories via a suitable base of enrichment).

Finitary algebraic theories were considered from the monadic perspective, independently from those afore-
mentioned, by Borceux and Day [BD80] in 1980. Their motivation was to develop aspects of universal algebra
in the setting of V-categories, for V a π-category: a complete and cocomplete closed symmetric monoidal
category such that taking products with a fixed object of V preserves sifted colimits, and satisfying a commu-
tation condition between products and coends. In this context, they defined a V-theory to be an essentially-
surjective-on-objects V-functor from Vf , the opposite of the subcategory of finite copowers of I , preserving
finite powers of I , and established a structure–semantics adjunction for V-theories. Of particular relevance to
the monad–theory correspondence is an equivalence, due to Kelly, between the category of V-theories, and
the category of monoids in the V-functor category [Vf ,V] [BD80, Proposition 2.6.1]. This bears resemblance to
the characterisation of monads as monoids in endofunctor categories; in fact, this equivalence may be seen in
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a modern light as a correspondence between V-theories and j-relative monads [ACU15,Theorem 3.5]. Modulo
the differences in the bases of enrichment, this correspondence may therefore be understood as a restriction
of Dubuc’s to the finitary setting.

In 1999, Altenkirch and Reus defined the notion of Kleisli structure to capture type theoretic structure,
which is a special case of the definition of j-relative monad for j having discrete domain [AR99, Definition 10].

In the same year, Power proved a monad–theory correspondence in a similar setting to that of Borceux
and Day, but with different conditions on the enriching category V , requiring a locally finitely presentable
closed monoidal category, and considering preservation of all finite cotensors rather than finite cotensors with
I , showing finite-cotensor-preserving identity-on-objects Vt-functors4 from Vf to be equivalent to finitary
V-monads on V [Pow99, Theorem 4.3]. Later, in 2009, assuming additionally that V is symmetric, Nishizawa
and Power generalised the correspondence to finitary V-monads on arbitrary locally finitely presentable
V-categories [NP09] (cf. the paper of Lack and Power [LP09] of the same year, which explores the same
correspondence from a different perspective). In this setting, V-theories are required to preserve all finite
V-limits.

The next enhancement to the monad–theory correspondence was made by Melliès in 2010. Three years
prior, Weber had introduced monads with arities [Web07, Definition 4.1] to generalise the Segal condition for
simplicial sets to the setting of well-behaved monads (where the classical Segal condition is recovered for
the free-category monad on Graph). Melliès observed that the definition of monads with arities was related
to Linton’s characterisation of the Eilenberg–Moore category for a monad in terms of its Kleisli category.
In particular, the Segal condition for a simplicial set arises exactly as the condition for a presheaf to be in
the image of the nerve Cat → [∆op, Set] in the pullback (7.2) [Mel10, §I & §III]. Furthermore, the limit-
preservation condition of an algebraic theory can be expressed in terms of a representability-preservation
condition. This suggests a general definition of Lawvere theory with arities j corresponding to that of monad
with arities j, for j : A→ E a dense fully faithful functor with small domain, and in this settingMelliès proved
a monad–theory correspondence [Mel10, §V]. This work was later developed further by Berger, Melliès and
Weber in 2012, for instance by generalising the characterisation of the Segal condition in terms of a sheaf
condition to monads with arities [BMW12, Lemma 3.6], but they did not prove a more general monad–theory
correspondence (cf. [BMW12, Theorem 3.4]).

In a separate development the following year, Lack and Rosický generalised the work of [NP09], taking
the base of enrichment V to be a complete and cocomplete closed symmetric monoidal category, and relaxing
finite limits to Φ-limits (for Φ a class of weights for which Φ-continuous weights are Φ-flat). In this set-
ting, they proved an equivalence between V-theories and Φ-accessible V-monads on a locally Φ-presentable
V-category [LR11, Theorem 7.7].

Relative monads were defined and studied by Altenkirch, Chapman and Uustalu [ACU10] in 2010, who
also rediscovered the notion of relative adjunction. Though their definition is equivalent to that of Walters’s
devices, their presentation, in the style of Manes, is more convenient in practice. In their 2010 paper, as well
as in an extended version of the paper five years later [ACU15], they established various constructions and
results regarding relative monads, such as the construction of the Kleisli and Eilenberg–Moore categories, and
the equivalence between relative monads and monoids in skew-monoidal functor categories. Furthermore,
they observed that the monads with arities of [BMW12] were induced by relative monads [ACU15, §4.3].
Notably, specialising the definition of j-relative monad to j = (F ↪→ Set) essentially recovers the definition
of abstract clone as defined by Hall. Thus, the equivalence between algebraic theories and abstract clones
may alternatively be seen to be an equivalence between algebraic theories and (F ↪→ Set)-relative monads.
Relative monads enriched in a symmetric monoidal category V were later defined by Staton in 2013 under
the name enriched clone, where j is a fully faithful V-functor [Sta13a, Definition 4] (cf. the j-abstract V-clones
of [Fio17b, Definition 1.1], which provides another definition of enriched relative monad, but with different
restrictions on j).

Recall that Justesen [Jus68] and Thiébaud [Thi71] characterised identity-on-objects functors as monads in
Prof. This characterisation may be extended to capture finitary algebraic theories, by incorporating product-
preservation. Hyland [Hyl14a] illustrated this in a 2014 paper, giving a bicategorical understanding of finitary

4Here, Vt is the monoidal category whose delooping is the one-object bicategory (ΣV)op.
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algebraic theories. The 2-monad on Cat for small categories with finite products extends to Prof, the Kleisli
bicategory for the presheaf construction [Fio+18]. An S-sorted finitary algebraic theory is then precisely a
monad on (the discrete category) S in the Kleisli bicategory for the extended 2-monad on Prof [Hyl14a, §4.3].
One thereby recovers the classical monad–theory correspondence.

In the same year, Garner [Gar14] presented a different perspective on the classical monad–theory cor-
respondence. A finitary monad on Set is equivalently a monoid in [F, Set], hence a one-object [F, Set]-
enriched category. From this perspective, one may analyse various results regarding algebraic theories, in-
cluding the monad–theory correspondence, using enriched category theory. In particular, Garner showed
how one can view the process of assigning to a finitary algebraic theory its corresponding finitary monad as
a [F, Set]-enriched Cauchy completion. This perspective was extended three years later in joint work with
Power [GP18], to the generality of [NP09; LP09]. To do so, it is necessary to move from categories enriched
in functor categories to categories enriched in the bicategory of locally finitely presentable categories.

Most of the monad–theory correspondences described thus far are orthogonal, in that few had been sub-
sumed by more general correspondences. In fact, in 2015, only the work of Nishizawa and Power had been
generalised by later work. Notably, no frameworks after Linton and Dubuc captured the classic examples of
infinitary algebraic theories and monads on Set, because they all made essential use of smallness assumptions.

In 2016, Lucyshyn-Wright proved a significant generalisation of the previous monad–theory correspon-
dences, subsuming many of the previous frameworks. Considering enrichment in V a closed symmetric
monoidal category, and fixing a dense fully faithful strong symmetric V-functor j : A → V satisfying cer-
tain well-behavedness conditions, Lucyshyn-Wright defined a notion of j-theory and proved a correspon-
dence between j-theories and monads on V preserving certain weighted colimits [Luc16, Theorem 11.8]. In
particular, since A is not assumed small, this captures the correspondences with large algebraic theories of
Linton [Lin69a] and Dubuc [Dub70b]. However, monad–theory correspondences for V-monads on categories
other than V are not captured: for instance, that of Nishizawa and Power [NP09].

Themost recent contribution to the monad–theory correspondence at the time of writing is the 2019 paper
of Bourke and Garner [BG19]. Working in the setting of enrichment in a locally presentable closed symmetric
monoidal category V , Bourke and Garner fixed a dense fully faithful V-functor j : A→ E with small domain
and locally presentable codomain, and considered an adjunction between A-pretheories, which are coslices
over A, and monads on E. They proved that the fixed points of the adjunction are respectively the A-theories
and the A-nervous monads. This framework was shown to subsume many monad–theory correspondences,
including that of Berger, Melliès and Weber, though it does not include the classic correspondence of monads
on Set, due to the requirement that A be small.

Monad–theory correspondences for higher-categories
In this thesis, we are concerned with monad–theory correspondences that may be carried out within a
2-category. However, monad–theory correspondences have also been developed in the setting of
(unenriched) (∞, 1)-categories, both following the approach of Berger–Melliès–Weber’s monads with
arities [Kos21] and of Bourke–Garner’s nervous monads [HM21]. We expect the perspective and techniques
presented in this thesis will be amenable to establishing general monad–theory correspondences subsuming
those aforementioned, in the same manner they do their 1-dimensional counterparts, but do not pursue such
a development here. In particular, our theory relies fundamentally on relative monads, a concept that, at the
time of writing, has not been developed internally to (∞, 2)-categories.

7.2 Monads and theories inW-CAT
LetW be a base of enrichment for which we have a notion ofW-enriched category (or simplyW-category):
for instance, a monoidal category [Bén65; Mar65], bicategory [Wal81, §1; Str83, §2], multicategory [Lam69,
p. 106], double category [Lei02], or suchlike. In each case,W-categories form a 2-categoryW-CAT, and it is
reasonable to ask under what assumptions we may establish monad–theory correspondences therein. While
it is possible to give explicit constructions validating the necessary assumptions, for instance to define Kleisli
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and Eilenberg–Moore W-categories and prove their universal properties, we shall prefer to avoid explicit
constructions where possible, as they are typically protracted and unenlightening. Fortunately, the formal
theory of relative monads provides us with a relatively minimal set of assumptions from which the others
may be derived. More precisely, it will only be necessary to show that:

1. W-CAT has a (identity-on-objects, fully faithful)-factorisation system.
2. W-CAT admits finite 2-limits.
3. W-CAT is equipped with a lax idempotent pseudomonad (in particular, the free small cocompletion).

(1) providesW-CATwith a resolute factorisation system, while (2) ensures thatW-CAT has Eilenberg–Moore
objects for (non-relative) monads. Using Corollary 5.5.9, having a lax idempotent pseudomonad will then
ensure W-CAT also has Eilenberg–Moore objects for relative monads. Kleisli objects may be obtained by
factorising the terminal resolution of each relative monad. For any reasonable notion of enrichment, (1) will
always hold, while (2) and (3) will typically hold in the presence of sufficient limits inW .

We will prove that (1 – 3) hold whenW is a locally bicomplete closed bicategory. This permits us to effi-
ciently use several known results about the 2-categoryW-CAT, rather than having to derive them ourselves.
First, we review the notion of category enriched in a bicategory [Wal81; Str83], the theory of which is analo-
gous to that of categories enriched in monoidal categories (cf. [Kel82]), but where we associate to each pair of
objects of the category not a hom-object, but a hom-morphism.

Notation 7.2.1. We shall use notation reminiscent of a monoidal category for the base of enrichment, with
the intent to aid the reader familiar only with enrichment in a monoidal category. To that end, we denote by
⊗ diagrammatic composition in the bicategoryW , and by I the identity for composition (technically both are
parameterised by objects ofW , but we will often leave this implicit for readability).

Definition 7.2.2 ([Bén67, Definition 5.5.1; Str83, §2]). LetW be a bicategory. AW-category A consists of
1. a class |A| of objects;
2. for each x ∈ A, an extent εx ∈ W ;
3. for all x, y ∈ A, a hom-morphism A(x, y) : εx → εy inW ;
4. for all x, y, z ∈ A, a composition µx,y,z : A(x, y)⊗A(y, z)⇒ A(x, z) inW ;
5. for each x ∈ A, an identity ιx : I ⇒ A(x, x) inW ,

such that the following diagrams commute
6.

(A(w, x)⊗A(x, y))⊗A(y, z) A(w, x)⊗ (A(x, y)⊗A(y, z))

A(w, x)⊗A(x, z)

A(w, y)⊗A(y, z) A(w, z)

αA(w,x),A(x,y),A(y,z)

µw,x,z

µw,y,z

µw,x,y⊗A(y,z)

A(w,x)⊗µx,y,z

7.
εx ⊗A(x, y)

A(x, y) A(x, x)⊗A(x, y)

λϵx
ιx⊗A(x,y)

µx,x,y

8.
A(x, y)⊗ εy

A(x, y)⊗A(y, y) A(x, y)

ρϵy
A(x,y)⊗ιy

µx,y,y
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AW-functor f : A→ B betweenW-categories consists of
1. a function |f | : |A| → |B| such that f preserves extent in that |f | ; εB = εA;
2. for all x, y ∈ A, a 2-cell fx,y : A(x, y)⇒ B(fx, fy),

such that the following diagrams commute
3.

A(x, y)⊗A(y, z) B(fx, fy)⊗B(fy, fz)

A(x, z) B(fx, fz)

µx,y,z µfx,fy,fz

fx,z

fx,y⊗fy,z

4.
Iϵx A(x, x)

Iϵfx
B(fx, fx)

ιx

fx,x

ιfx

A W-transformation α : f ⇒ g : A → B between W-functors consists of a family of 2-cells
ϕx : I ⇒ B(fx, gx) for each x ∈ |A| making the following diagram commute for all x, y ∈ |A|:

IA(x,y) ⊗A(x, y) B(fx, gx)⊗B(gx, gy)

A(x, y) B(fx, gy)

A(x, y)⊗ IA(x,y) B(fx, fy)⊗B(fy, gy)

λ−1
A(x,y)

ρA(x,y)

φx⊗gx,y

fx,y⊗φy

µfx,gx,gy

µfx,fy,gy

We denote byW-CAT the 2-category ofW-categories,W-functors, andW-transformations; and byW-Cat
the full sub-2-category spanned by smallW-categories (i.e. those for which the class of objects is a set).

We will assume W is locally bicomplete (that is, its hom-categories are small-complete and
small-cocomplete) and closed (that is, has all right extensions and right lifts). The convenience of this
assumption is demonstrated by the following theorems, stating that W-CAT is closed under small 2-limits
and admits cocompletions of smallW-categories (for the latter, we refer to [Fio+18] for the definition of lax
idempotent relative pseudomonad).

Theorem 7.2.3 ([Bet+83, Theorem 10]). Suppose that W is a locally bicomplete closed bicategory. Then the
2-categoryW-CAT has small 2-limits.

Theorem 7.2.4 ([Str83, §4]). Suppose thatW is a locally bicomplete closed bicategory. ThenW-CAT is equipped
with a lax idempotent relative pseudomonad P exhibiting a biequivalence

W-Cocts(PA,B) ' W-CAT(A,B)

for allW-categories A and B for which A is small.

By the bicategorical analogue of Corollary 5.4.8, P extends to a pseudomonad on W-CAT expressing
free small-cocompletion, which permits us to close largeW-categories under small colimits. It is possible to
define a bicategoryW-Prof of smallW-categories,W-profunctors, andW-transformations [Str83], and a cor-
responding proarrow equipmentW-Cat→W-Prof. However, we shall be interested in someW-categories
that are not small. To facilitate such a consideration, we observe that W-Prof is biequivalent to the Kleisli
bicategory Kl(P) (cf. [Fio+18]), with the Kleisli inclusion giving the proarrow equipment structure. We shall
instead consider the proarrow equipmentAdmP(W-CAT)→ Kl(P), for which the 1-cells in the domain are
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thoseW-functors f : A→ B for which Pf : PA→ PB has a right adjoint, as described in Section 5.1.1. In
particular, this includesW-functors from smallW-categories, as well as identityW-functors, which allows us
to consider relative monads with roots j : A→ E for which E is a largeW-category. ByW-enriched relative
monad, then, we mean a relative monad in the proarrow equipment AdmP(W-CAT)→ Kl(P).

Just as with categories and functors, the 2-category W-CAT has a (identity-on-objects, fully faithful)-
factorisation system.

Definition 7.2.5. AW-functor f : A→ B is
1. identity-on-objects if |f | : |A| → |B| is the identity function;
2. fully faithful if, for all x, y ∈ A, the 2-cell fx,y : A(x, y)⇒ B(fx, fy) is invertible.

It is evident that full faithfulness in the W-enriched sense coincides with full faithfulness in the corre-
sponding proarrow equipment.

Lemma 7.2.6. Let W be a bicategory. The 2-category W-CAT has a resolute factorisation system whose left
class comprises the identity-on-objectsW-functors and whose right class comprises the fully faithfulW-functors.

Proof. Let f : A → B be a W-functor between W-categories. Define the full image of f , denoted imf , to
be the W-category whose objects are those of A and for which the extent of x ∈ A is given by that of fx,
and for which imf(x, y) = B(fx, fy). There are evident W-functors A → imf → B composing to f ,
for which the former is identity-on-objects and for which the latter is fully faithful. Clearly these classes
are closed under composition and identities, and the factorisation is unique up to unique isomorphisms of
objects and hom-morphisms. The (identity-on-objects, fully faithful) W-functors therefore form an orthog-
onal factorisation system. It remains to show that identity-on-objects W-functors factor hom-actions (Def-
inition 6.1.2). Let k : A → K be an identity-on-objects W-functor and let ` : A → B be a W-functor. A
hom-action δ : K(k, k) ⇒ B(`, `) is exactly the data of a W-functor d : K → B on hom-morphisms. The
data of the object-function |d| : |K| → |B| is given by the object-function of `, since |K| = |A|. It is clear that
d : K → B is the uniqueW-functor factoring δ.

This factorisation system is the (surjection, inclusion)-factorisation system of the proarrow equipment
AdmP(W-CAT)→ Kl(P) (cf. [Woo85]), and is consequently resolute, since eachM-cell is fully faithful.
To establish a monad–theory correspondence, it remains to show that W-CAT admits (enough) Kleisli and
Eilenberg–Moore objects for relative monads. We shall restrict our attention to those relative monads having
dense roots j : A → E, which is in any case necessary for the monad–theory correspondence and allows us
to avoid giving an explicit construction the ofW-categories involved.

Theorem 7.2.7. LetW be a locally bicomplete closed bicategory. ThenW-CAT has Eilenberg–Moore algebra-
objects and Kleisli resolutions for relative monads with dense fully faithful roots with small domain.

Proof. W-CAT has Eilenberg–Moore algebra-objects for relative monads with dense fully faithful roots with
small domain by Corollary 5.5.9, since it has finite limits byTheorem 7.2.3 and a lax idempotent pseudomonad
P by Theorem 7.2.4. It hence has Kleisli resolutions for the same by Corollary 6.1.11, which are given in the
usual manner: for a j-monad T , the W-category Kl(T ) has as objects those of A, and the hom-morphism
Kl(T )(x, y) is given by E(jx, ty). We shall use Lemma 5.2.18 to show more generally that it admits Kleisli
constructions (making use of Lemma 5.2.15 to characterise right-morphisms just in terms of their left relative
adjoints). Let j : A → E be a dense P-admissible W-functor. Given a j-monad morphism φ : t ⇒ t′, we
construct an identity-on-objectsW-functor whose action on objects x, y ∈ A is given by

Kl(T )(x, y) = E(jx, ty)
E(jx,ϕy)−−−−−−→ E(jx, t′y) = Kl(T ′)(x, y)

In the other direction, since j is dense, an identity-on-objectsW-functor Kl(T ) → Kl(T ′), which induces a
W-transformationW-natural in y ∈ A,

E(j−, ty) = Kl(T )(kT−, y)→ Kl(T ′)(kT−, y) = E(j−, t′y)

88



Chapter 7. The enriched monad–theory correspondence 7.3. Comparison with other frameworks

is equivalently specified by aW-transformation t ⇒ t′;W-functoriality of Kl(T ) → Kl(T ′) further implies
that this is a morphism ofW-enriched relative monads. Clearly the relative monad morphism is the identity
if and only if theW-functor is the identity. Now consider a diagram such as the following.

Kl(T ′)

Kl(T ) B′

A
kT ℓ′

[]T ′

b

Observe that aW-functor Kl(T )→ B′ over A assigns a 2-cell for each pair x, y ∈ A

Kl(T )(x, y)
bx,y−−→ B(`′x, `′y) ∼= E(jx, r′`′y) ∼= E(jx, t′y) = Kl(T ′)(x, y)

which canonically defines the requisite identity-on-objectsW-functor Kl(T )→ Kl(T ′) giving a (necessarily
unique) lift of []T ′ along b.

In particular, we recover Pumplün’s characterisation of Kleisli categories and morphisms [Pum70, Satz 6]
whenW is the delooping of Set and j is the identity.

Remark 7.2.8. In fact,W-Cat has Kleisli constructions for arbitrary relative monads and Eilenberg–Moore
algebra-objects assuming the existence of certain limits, but at present we have no general tools for establish-
ing such results, nor do we make use of relative monads without dense roots in what follows, so we shall not
give an explicit construction.

We thus obtain a correspondence betweenW-enriched j-theories andW-enriched j-monads.

Corollary 7.2.9. Let j : A→ E be a P-admissible denseW-functor. Suppose either that A is small or that j is
the identity5. The categories of j-theories and of j-monads are equivalent.

Th(j) ' RMnd(j)

Proof. Follows from Theorem 6.2.2 in light of Lemma 7.2.6 and Theorem 7.2.7.

Just as in the formal setting, not everyW-enriched j-monad is realisable; we provide sufficient conditions
below.

7.3 Comparison with other frameworks
We conclude by justifying our claim that our general correspondence strictly subsumes those that have come
before. It would be pleonastic to give an explicit comparison with every enriched monad–theory correspon-
dence in the literature, so we instead start by observing that the correspondences described in Section 7.1 have
generalised previous correspondences in one or more of the following ways.
(A) Permitting monads on categories other than the base of enrichment.
(B) Relaxing j : A → E from exhibiting cocompletions under weighted colimits to arbitrary dense fully

faithful functors.
(C) Weakening assumptions on the base of enrichment V (e.g. permitting V to be nonsymmetric, non-

bicomplete, etc.).
5These size assumptions are entirely for convenience, since we have only proven existence of Kleisli and Eilenberg–Moore

W-categories under these assumptions. Giving direct constructions would permit us to relax these assumptions, but we do not need
to do so for our motivating results.
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(D) Weakening size assumptions (e.g. permitting V-monads on V).
With respect to these considerations:

(A & B) We take as our j essentially any P-admissible denseW-functor, in particular imposing no restriction
on the codomain.

(C) The weakest assumptions on the bases of enrichment that appear in the literature are the nonsymmetric
V of Power [Pow99] and the non-bicomplete V of Lucyshyn-Wright [Luc16]. Since we consider as our
base of enrichment an arbitrary locally bicomplete closed bicategory, we work in a strictly more general
setting than Power; we will explain shortly how our assumption of local bicompleteness may be relaxed
to subsume also Lucyshyn-Wright’s setting.

(D) Though strictly speaking we do require j to be P-admissible, this is only necessary to ensure the req-
uisite presheaf and nerve constructions exist. In the presence of large cocompletions, this restriction is
unnecessary. In any case, our motivating examples satisfy P-admissibility.

From the perspective of these axes of generalisation, the correspondences of Power [Pow99] (A), Lucyshyn-
Wright [Luc16] (AB), Melliès [Mel10] (CD), and Bourke and Garner [BG19] (CD) form a convex hull for en-
riched monad–theory correspondences. None strictly subsumes any of the others: however, save for non-
symmetric enrichment, [Pow99] is subsumed by [Luc16]; and save for the presentability assumption on E,
[Mel10] is subsumed by [BG19, §7]. We will therefore focus only on the correspondences proven in [Luc16;
BG19]; the others then trivially follow given our assumptions.

We should point out that whilemonad–theory correspondences are themain results of the paperswe cite in
this section, there are typically not the only results of interest to the authors. It is certainly the case that many,
if not all, of these results can also be better understood from the perspective of relative monads. However, we
shall focus on the monad–theory correspondence, leaving the investigation of related phenomena to future
work.

7.3.1 Lucyshyn-Wright [Luc16]
Fix a closed symmetric monoidal category V . The main result of Lucyshyn-Wright [Luc16] is an equivalence
of categories between a full subcategory of A/V-CAT spanned by the j-theories and the category of monads
on V preserving a class of weighted colimits. In this sense, Lucyshyn-Wright’s correspondence is very much
in the spirit of early monad–theory correspondences, where theories and monads are characterised in terms
of (co)limit-preservation properties. Conceptually, then, the correspondence follows in much the same way
as that of Chapter 3. We recall terminology from [Luc16], though, in keeping with our convention, we dualise
appropriately to facilitate a clearer comparison with our framework.

First, we define a eleutheric system of arities, which will play the role of the root of a relative monad.

Definition 7.3.1 ([Luc16, Definition 3.1, Proposition 3.10, Theorem 7.8]). A system of arities is a dense fully
faithful strong symmetric monoidal V-functor j : A → V . A system of arities is eleutheric if j exhibits V as
the free cocompletion of A under Nj-weighted colimits.

Theories are then defined analogously to the classical setting (cf. [Lin66b; Dub70b]).

Definition 7.3.2 ([Luc16, §4, Definition 4.1]). Let j : A → V be a system of arities. A V-functor preserves
j-copowers if it preserves copowers with ja for each a ∈ A. A j-theory is an identity-on-objects V-functor
f : A→ B that preserves j-copowers.

That j-copower preservation corresponds to relative adjointness could be proven in much the same way
as Proposition 3.2.3 and Proposition 3.2.4 in the unenriched setting, but for convenience we prove it directly.

Lemma 7.3.3. Let j : A → V be a eleutheric system of arities. A j-theory in the sense of [Luc16] is precisely a
j-theory in the sense of Definition 3.1.13.

Proof. By the argument of [Luc16, Proposition 9.4], a V-profunctor P : B → PA sends j-copowers in A to
j-powers if and only if P is copresheaf-representable in that there exists a V-functor u : B → V such that
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P ∼= V(j−, u−) [Luc16, Definition 9.2]. Let f : A → B be a V-functor. Since hom-V-functors preserve
weighted limits in their first arguments, the V-profunctor B(f−,−) sends j-copowers in A to j-powers if
and only if f is a j-theory in the sense of [Luc16], if and only if B(f−,−) ∼= V(j−, u−), i.e. f ja u.

In particular, in conjunction with Theorem 3.1.14, this proves an informal conjecture of [Luc16, §1], ex-
pressing j-theories as enriched relative monads. We immediately recover Lucyshyn-Wright’s monad–theory
correspondence.

Corollary 7.3.4 ([Luc16, Theorems 11.8 & 11.14]). Let V be a closed symmetric monoidal category and let
j : A→ V be an eleutheric system of arities for which A is small or j is the identity6. There is an equivalence of
categories,

Th(j) ' Mnd{Nj}(V)
where Mnd{Nj}(V) is the category of monads on V preserving Nj-weighted colimits7, and this commutes with
taking algebras.

Proof. For an eleutheric system of arities, we are in the setting ofTheorem 5.5.8, from which the result follows
by taking the lax idempotent pseudomonad to be cocompletion under Nj-weighted colimits (cf. [KL00]).

Universe enlargement

Lucyshyn-Wright does not assume that V is bicomplete. We shall briefly sketch how it ought to be possible to
drop this assumption also in our setting; without a motivating example, we omit a precise treatment. Every 2-
categoryK embeds into the bicomplete 2-presheaf category K̂ via the 2-Yoneda embedding. A lax idempotent
pseudomonad on K induces a lax idempotent pseudomonad on K̂ via left 2-Kan extension and, since the 2-
Yoneda embedding is 2-cocontinuous it preserves Eilenberg–Moore objects for admissible relative monads
with dense roots. If K has a resolute factorisation system, K̂ inherits it (cf. [Hyl14a, §3.2]), in which case K̂
admits Eilenberg–Moore and Kleisli objects for admissible relativemonadswith dense roots. Wemay therefore
carry out monad–theory correspondences in K̂without concern about existence of Eilenberg–Moore or Kleisli
objects. Lastly, one may observe that the monad–theory correspondence preserves representability, in that a
theory in K corresponds to a monad in K̂ only if the monad is represented by a monad in K, and vice versa.
In this way, we may deduce monad–theory correspondences inK from those in K̂ by restricting our attention
to the representable theories and monads.

In the absence of a 2-categorical framework, a similar approach ought also to be possible, by modifying
the base of enrichment rather than the 2-category itself. Every locally small bicategory W embeds into its
local cocompletion W ′ [Kel+02, §5], which is locally bicomplete and closed, so that W ′-CAT admits Eilen-
berg–Moore and Kleisli objects. One may then carry out monad–theory correspondences forW ′-categories.
These correspondences preserve representability of extent, so that a theory enriched inW corresponds to a
W ′-monad only if theW ′-monad is represented by aW-monad, and vice versa. In this way, we may deduce
monad–theory correspondences inW-CAT from those inW ′-CAT by restricting our attention to the theories
and monads with representable extent. This is essentially the approach taken by Lucyshyn-Wright.

7.3.2 Bourke and Garner [BG19]
Fix a symmetric monoidal category V and a dense fully faithful V-functor j : A→ E with small domain and
locally presentable codomain. The main result of Bourke and Garner [BG19] is an equivalence of categories
between a full subcategory of A/V-CAT spanned by the A-theories and the category of A-nervous monads
on E. While the authors demonstrate the implications of this equivalence is broad-ranging, the conceptual
meaning of the conditions for an identity-on-objects V-functorA→ B to be anA-theory, and for a monad on
E to be nervous, may not appear evident, having been extracted from the fixed point conditions for an adjunc-
tion restricting to the monad–theory equivalence, rather than being motivated by first principles. However,

6[Luc16] does not have these size conditions, but as mentioned previously we impose them for simplicity. In any case, the examples
ibid. satisfy these assumptions, and the extra generality provides no additional clarity.

7Here, we employ the notion of colimit weighted by a V-profunctor, rather than simply a V-functor [SW78, §4; Woo82, §2].
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we will show that, interpreting their conditions from the perspective of relative monads, both A-theories
and A-nervous monads turn out to have entirely natural reformulations that explain their appearance in the
monad–theory correspondence of Bourke and Garner.

First, we recall a definition of [BG19] necessary to define the concept of A-theory. Categorical concepts
defined using the Yoneda embedding may often be generalised by replacing the Yoneda embedding with the
nerve functor Nj = E(j−,−) for some (usually dense) j : A → E, and this is typically the correct gener-
alisation for relative monadic concepts: the following is the corresponding generalisation of representable
functor.

Definition 7.3.5 (cf. [BG19, §2.1]). Let j : A→ E be a P-admissible V-functor. A V-presheaf p : Aop → V is
j-representable8 if there exists an object e ∈ E such that p ∼= Nj(e).

Naturally, just as 1E-adjoint functors are simply adjoint functors, 1E-representable presheaves are simply
representable presheaves onE. The condition for aV-functor to be anA-theory is illuminated by the following
lemma.

Lemma 7.3.6. Let j : A→ E and f : A→ B be P-admissible V-functors. Of the following, (1) implies (2); if j
is dense, then (2) implies (1).

1. f is left- j-adjoint.

2. For every y ∈ B, the presheaf B(f−, y) : Aop → V is j-representable.

Proof. (2) holds when, for every y ∈ B, there exists an x ∈ E such that B(f−, y) ∼= E(j−, x). Define a
function uy := x, so that B(f−, y) ∼= E(j−, uy). u is easily seen to extend uniquely to a V-functor for
which the bijections B(f−, y) ∼= E(j−, uy) are V-natural in y: for any υ : y → y′, we have a morphism

E(j−, uy)
∼=−→ B(f−, y) B(f−,υ)−−−−−→ B(f−, y′)

∼=−→ E(j−, uy′)

which, assuming density of j, hence full faithfulness ofNj , induces a morphism uy → uy′. The isomorphism
B(f−, y) ∼= E(j−, uy) is thus V-natural in y, essentially by definition, so that f ja u. The converse is
trivial.

It is direct that Bourke and Garner’s notion of theory coincides with our own9.

Corollary 7.3.7. Let j : A → E be a dense V-functor. An A-theory in the sense of [BG19, Definition 15] is
precisely a j-theory in the sense of Definition 3.1.13.

Proof. Using our notation, a V-functor f : A→ B is an A-theory when it is identity-on-objects and for every
y ∈ B, the presheaf B(f−, y) is j-representable. The claim thus follows from Lemma 7.3.6.

To explain the definition of A-nervous monad, the following lemma will be useful (cf. Corollary 5.5.6 and
Remark 5.5.7).

Lemma 7.3.8. Let j : A → E be a P-admissible V-functor, and let T be a j-monad. The following square
commutes up to natural isomorphism if and only if kT ; ` ja r.

X P(Kl(T ))

E PA

kT
∗

Nj

r

Nℓ

8j-representable V-presheaves were called j-nerves in [BG19]. We rename them to be consistent with terminology such as j-adjoint,
j-absolute, and so on.

9Marcelo Fiore has notified the author that he had, by different methods, independently observed in 2018 the equivalence between
Bourke–Garner’s A-theories, and V-enriched j-monads.
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Proof. First, observe that Nℓ ; kT ∗ = NkT ;ℓ. Hence the square commutes up to natural isomorphism if and
only ifNkT ;ℓ

∼= r ;Nj , i.e. if and only ifX(`kT−,−) ∼= E(j−, r−), which holds if and only if kT ; ` ja r.

We may now show that the nervousness condition of Bourke and Garner is equivalent to asking for the
canonical functor EM(T ) → EM(j ; T ) to be essentially-surjective-on-objects and fully faithful, hence an
equivalence10: which, by Theorem 5.4.6, is precisely the condition that T is j-ary.

Lemma 7.3.9. Let j : A→ E be a P-admissible dense V-functor. A monad is A-nervous in the sense of [BG19,
Definition 17] precisely when it is j-ary in the sense of Definition 5.4.1.

Proof. Using our notation, a monad T on E is A-nervous when
1. qT ; iT : Kl(j ; T )→ Kl(T )→ EM(T ) is dense.
2. A presheaf p : Kl(j ;T )op → V is (qT ;iT )-representable if and only if kj;T op ;p : Aop → Kl(j ;T )op → V

is j-representable.
First, we show that NqT ;iT is naturally isomorphic to rT ;Nij;T : EM(T ) → EM(j ; T ) → P(Kl(j ; T )). To
see this, observe that the following diagram commutes up to natural isomorphism,

EM(T ) P(Kl(j ; T ))

E PA

kj;T
∗

Nj

uT

NqT ;iT

by Lemma 7.3.8, since kj;T ; qT ; iT = kT ; iT = fT and fT ja uT , and hence there is a mediating morphism
EM(T ) → EM(j ; T ) by Corollary 5.5.6 and Remark 5.5.7 such that postcomposing uj;T gives uT . Since rT
is the unique V-functor with this property, the claim follows.

Consequently, (1) asks for rT ;Nij;T to be fully faithful, which, sinceNij;T is fully faithful by Corollary 5.5.6,
implies that rT is also fully faithful; and conversely. (2) asks that every presheafP onKl(j;T ) is in the essential
image of rT ;Nij;T if and only if kj;T ∗(P ) ∼= Nj(e) for some object e ∈ E. In particular, every presheaf in the
image of Nij;T satisfies this latter condition by Corollary 5.5.6 and Remark 5.5.7, and is hence in the image of
rT ;Nij;T , exhibiting rT as being essentially-surjective-on-objects; and conversely.

Therefore, (1 & 2) ask exactly that rT to be fully faithful and essentially-surjective-on-objects, i.e. an
equivalence of categories EM(T ) ' EM(j ; T ), which necessarily commutes up to isomorphism with the
forgetful functors. Hence, by Theorem 5.4.6(3), T is A-nervous if and only if it is j-ary.

The definitions of A-theories and A-nervous monads are thus seen to have natural reformulations in the
language of relative monads. To demonstrate that the monad–theory correspondence of [BG19] follows as a
consequence of our general theory, we observe finally that local presentability of the codomain of j : A→ E
is a particularly useful assumption, as it renders every j-monad realisable.

Lemma 7.3.10. Let E be a locally-presentable V-category, and let j : A → E be a dense functor with small
domain. Every j-monad T is realisable.

Proof. First observe that EM(T ) is cocomplete, since the following square forms a (pseudo)pullback by Theo-
rem 5.5.2,

EM(T ) EM(T ;Nj)

E PA

uT ;Nj

Nj

uT

⌟

10We owe this observation to Dylan McDermott.
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and the 2-category of locally presentable categories and right adjoint functors is closed under bilimits [Bir84,
Theorem 6.11]. Since A is small and EM(T ) is cocomplete, the pointwise left extension j ·▷ fT exists.

EM(T )

A E
j

fT j ·▷fT

Hence, Proposition 5.4.7 together with Lemma 5.4.4 implies that T is realisable.

We then recover the main theorem of [BG19].

Corollary 7.3.11 ([BG19, Theorem 19]). Let V be a locally presentable closed symmetric monoidal category, A
be a small V-category, E be a locally presentable V-category, and j : A→ E be a dense fully faithful V-functor.
There is an equivalence of categories

Th(j) ' Mndj(E)

Proof. Since every j-monad is realisable, by Lemma 7.3.10, the result follows from Corollary 5.4.8 together
with Corollary 7.2.9.

Bourke and Garner obtain their main theorem as a restriction of an adjunction between pretheories (i.e.
identity-on-objects functors from A) and monads on E. Unfortunately, this is not possible in much greater
generality: constructing a monad from a pretheory makes crucial use of local presentability ofE to guarantee
the existence of an adjoint. In this sense, we do not view the monad–pretheory adjunction as a crucial aspect
of the monad–theory correspondence. However, the monad–pretheory adjunction can be seen to arise as
a facet of a more general phenomenon: the general structure–semantics adjunction of Linton [Lin69a]. In
future work, we will explain how the (relative) monad–theory correspondence can be seen to arise from the
structure–semantics adjunction, from which the monad–pretheory adjunction follows immediately assuming
local presentability of E (cf. [Ark21]).

7.3.3 Johnstone and Wraith [JW78]
The one monad–theory correspondence that is not presented in the setting of enriched category theory is
the internal monad–theory correspondence of Johnstone and Wraith [JW78]. At first glance, this appears
to be a good candidate for an application of the formal monad–theory correspondence, working within the
2-category of categories internal to a topos E . While this would be one reasonable approach, we may actually
take advantage of an observation of Betti and Walters [BW85] to rephrase the correspondence as an enriched
monad–theory correspondence. In particular, this demonstrates the strength of bicategory-enrichment over
enrichment in a monoidal category. We shall briefly sketch how the internal monad–theory correspondence
may be obtained from our general framework.

Let E be a topos with a natural numbers object. In [JW78, Definition 7.1], the authors define an algebraic
theory internal to a E to be a monad internal to the 2-category of categories locally internal to E . By [BW85,
Proposition 4.3], this 2-category is biequivalent to the 2-category of Span(E)-enriched categories with restric-
tions [BW85, Definition 1.8], which are a class of absolute weighted colimits. Though Johnstone and Wraith
equate theories with monads, we may more precisely define E-internal algebraic theories to be identity-on-
objects Span(E)-functors from E and E-internal monads to be Span(E)-monads on E , from which we get an
E-internal monad–theory correspondence by Theorem 6.2.2.

For the finitary case, we may consider j = (Ef ↪→ E), the inclusion of the free cocompletion of 1 un-
der finite E-indexed coproducts into the free cocompletion of 1 under E-indexed colimits [Joh02a, Exam-
ple B3.2.9]. The category [Ef , E ] is the classifying topos of objects over E [Joh02b, Example B4.2.4(a)], and
so j-monads are precisely the finitary algebraic theories internal to E of [JW78, Definition 5.3]. We thus re-
cover both the correspondence between internal finitary algebraic theories and internal Lawvere theories (i.e.
j-theories) [Joh77, Theorem 5.14], and the correspondence between internal finitary algebraic theories and
finitary Span(E)-monads on E [JW78, Corollary 7.6].
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7.3.4 Representations of relative monads
We shall conclude by rephrasing several definitions appearing in Section 7.1 in terms of relative monads, thus
explaining their appearance in the monad–theory correspondence literature. First, we observe that monads
relative to the Yoneda embedding have various equivalent formulations.

Proposition 7.3.12. Let A be a smallW-category. The following categories are equivalent:
1. The full subcategory of A/W-Cat spanned by identity-on-objectsW-functors.

2. Th(よA);

3. MndP(PA).
4. The category of monads on A inW-Prof.

Proof. (1) ⇐⇒ (2) follows from the enriched analogue of Proposition 3.2.2, since everyW-functor with do-
main A is P-admissible. (2) ⇐⇒ (3) follows from Theorem 5.5.8 together with Theorem 6.2.2. (3) ⇐⇒ (4)
follows by the biequivalence betweenW-Prof and the full sub-bicategory ofW-Cocts on the presheaf cate-
gories, given by the inclusion of Kl(P) in EM(P).

These observations are not new (at least in the unenriched setting), though our proof, which relies on our
conceptual understanding of the monad–theory correspondence, is new. (1) ⇐⇒ (4) is originally due to
Justesen [Jus68, p. 6.22] (cf. [Thi71, Proposition II.1.5]); an enriched version appears in [Luc16, Corollary 10.4].
(3) ⇐⇒ (4) is originally due to Thiébaud [Thi71, Remark III.1.4] (in dual form). (2) ⇐⇒ (3) is originally due
to Diers [Die75, Exemple 5.5].

Let j : A→ E be aW-functor. Since j-theories are in particular identity-on-objectsW-functors, we may
ask how the different characterisations of Proposition 7.3.12 restrict correspondingly. The answer is given
by Corollary 5.5.11: namely, the cocontinuous monads on PA, and hence also the monads on A inW-Prof,
corresponding to j-theories are precisely those of the form t;Nj , for someW-functor t : A→ E. Taking j to be
fully faithful, we thereby recover Diers’s definition of j-monad [Die75, Définitions 1.0], since, when j is dense
and fully faithful, a 2-cell η : j ⇒ t is equivalently given by a 2-cellよA

∼= j ;nj ⇒ t ;nj , which is the unit of a
monad onA inKl(P). Furthermore, this characterisation justifies the approach of Lee, who represents relative
monads by cocontinuous monads on presheaf categories [Lee77, Chapter 2]. Finally, we recover Lucyshyn-
Wright’s characterisation of j-monads (there given as a characterisation of j-theories) [Luc16, Theorem 10.5],
who calls monads in V-Prof of the form t ;Nj copresheaf-representable [Luc16, Definition 9.2].

7.3.5 Examples
We give a few examples of monad–theory correspondences arising as special cases of the general monad–
theory correspondences forW-CAT. Further examples may be found in the papers referenced in the previous
section.

Example 7.3.13. Arrows on a small category A, in the sense of Hughes [Hug00], areよA-relative monads by
[ACU15, Theorem 5.2], thus arbitrary identity-on-objects functors from A by Corollary 7.2.9. They are hence
equivalent to cocontinuous monads on PA.

Example 7.3.14. Let V = Cat and j = (F(1) ↪→ Sind(F(1)) ' Cat). Then j-theories are the 2-algebraic
theories of Gray [Gra73] and the discrete finitary Lawvere V-theories of Power [Pow05] and Hyland and
Power [HP06], which are equivalent to the strongly finitary monads on Cat of [KL93]. Taking instead ℵ1-ary
coproducts similarly recovers the discrete countable Lawvere V-theories of [Pow05; HP06].

Example 7.3.15. Let CGTop∗ denote the closed symmetric monoidal category of pointed compactly gener-
ated spaces. Considering enrichment in V = CGTop∗ and taking j to be the inclusion of finite copowers of
I into V , we recover the finitary pointed topological theories of Beck [Bec69, (6)].
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Example 7.3.16. The parameterised algebraic theories of Staton [Sta13a; Sta13b] were exhibited in [Sta13a,
Theorem 2] as enriched abstract clones, hence enriched relative monads. By Corollary 7.2.9, they are equiv-
alently given by PL -enriched (FL → PL )-theories for L : L → L a parameterising algebraic theory,
hence are equivalent to sifted-cocontinuous PL -monads on PL .

Example 7.3.17. As observed by Staton [Sta14], Freyd categories [PT97; PT99] are equivalently V-enriched
(Vf → V)-theories, for V a locally ∅-presentable cartesian-closed category in the sense of Adámek, Borceux,
Lack and Rosický [Adá+02] ([Sta14, Theorem 3.3]); while distributive Freyd categories [Pow04; Pow06] are
V-enriched (Vf → V)-theories, for V a locally FinProd-presentable cartesian-closed category in the sense
of Lack and Rosický [LR11] ([Sta14, Theorem 3.5]). As such, both correspond to classes of enriched monads
preserving certain colimits.

Example 7.3.18. In [GP98], Gordon and Power study algebraic structure for categories enriched in bicate-
gories. In particular, they are interested in (conically) finitaryW-monads on a closed locally (conically) finitely
presentable bicategory A. Though they do not provide a monad–theory correspondence, our theory provides
one. Their motivating example ofW is (the nonsymmetric monoidal category) LocOrdf , the category of small
locally-ordered categories equipped with the lax Gray tensor product [KP96].
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Chapter 8

Concluding remarks

In these pages, we have studied two strands of structure, which at first appear entirely unrelated to one another,
save for their common origin in categorical logic. Indeed, even setting aside for a moment the presence of
higher-order structure, the relationship between algebraic structure and monadic structure is quite striking:
while we have thoroughly examined the correspondence between algebraic theories and monads, to the point
at which we feel justified in claiming to have dispelled any mystery behind the phenomenon, that is not to
say that we find the correspondence unremarkable. Quite to the contrary, that algebraic theories and monads
arose separately, motivated by entirely different questions, but happened to be perfectly in correspondence,
still appears to us a paradigmatic example of the beauty of mathematics. That this relationship furthermore
extends from the first-order setting to the higher-order setting is deeply telling of the expressivity of (relative)
monadic structure.

We view the contributions of the two parts of this thesis quite differently. The formalism of higher-order
algebraic theories is a valuable tool for reasoning about higher-order and variable-binding structure, and we
have pursued a thorough treatment in order to facilitate the application of higher-order algebraic theories
to problems in theoretical computer science and elsewhere. By establishing that many of the fundamental
results in the theory of algebraic theories extend to higher-order algebraic theories (the monad–theory corre-
spondence being just one example of such a result), it ought to be straightforward for anyone familiar with
algebraic theories to use the same techniques to study higher-order algebraic theories. On the other hand,
while we have developed a general framework for monad–theory correspondences, which may very well be
used to recover new correspondences of interest, we view the main contribution of the second half of this
thesis as conceptual rather than practical. In particular, with the understanding that theories are relative mon-
ads, the rest of the development flows naturally and is, in some sense, inevitable. The story we have told here
is far from complete: some parts we have merely alluded to, whilst others are, as of yet, waiting to be told.
We shall go into a little more detail below about the subsequent directions in which we expect our work to be
developed.

8.1 Future work
There are a number of lacunae in the development we have presented, an inevitable consequence of temporal
constraints. There are also a number of future directions we hope to pursue.

8.1.1 Higher-order algebraic theories
In Chapter 4, we established a (relative) monad–theory correspondence for higher-order algebraic theories.
However, the (relative) monads involved are subject to a technical condition (namely, +-linearity) that may
leave the reader feeling somewhat dissatisfied. With Dylan McDermott, we plan to rephrase the +-linearity
condition in terms of an enrichment in a particular nonsymmetric monoidal category: the general monad–
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theory correspondence of Chapter 7 will then exhibit the relationship between higher-order algebraic theories
and +-linear (relative) monads as an enriched monad–theory correspondence. In fact, this has been a sec-
ondary motivation for taking our base of enrichment in Chapter 7 to be a bicategory, as there was previously
no enriched monad–theory correspondence with general enough base to capture this setting of interest1.

More generally, the inductive construction of the category of (n + 1)th-order algebraic theories in terms
of the category of nth-order algebraic theories suggests a fruitful pursuit of similar understandings for other
structures in categorical logic: for instance, operads [May97] and substructural type theories [TP05; TP06],
essentially algebraic theories [Fre72], and generalised algebraic theories [Car78]. That the latter in particular
might be understood this way is suggested by the work of Uemura [Uem20]: indeed, gaining a better un-
derstanding of higher-order structure for dependent type theories by first understanding that of simple type
theories was one of the original motivations for studying higher-order algebraic theories.

Finally, as we mentioned in the introduction, we should like to represent general simple type theories in
a manner similar to algebraic theories. Here, we have described one aspect: that of higher-order structure.
To describe simple type theories, we must additionally consider algebraic structure on the sorts of a (higher-
order) algebraic theory. In the future, we intend to show that this structure is naturally understood from the
perspective of enriched category theory. Furthermore, an understanding of algebraic type structure is not
far removed from higher-order algebraic type structure, or from polymorphic type structure, facilitating an
algebraic-theoretic perspective on the work of Fiore and Hamana [FH13]. We expect that such theories may
also be understood monadically.

8.1.2 The formal theory of relative monads
As we stated in Chapter 5, we developed the formal theory of relative monads only to the extent necessary to
establish our main results (namely, those directly pertinent to the monad–theory correspondence). Notable
omissions include the consideration of relative monads as monoids in skew-monoidal hom-categories; the
study of left-morphisms of relative adjunctions, and of right-modules (or opalgebras); a detailed comparison
of relative adjunctions and (left- and right-)modules; and definitions2 of 2-categories of relative monads in a
proarrow equipment and its relation to the construction of (op)algebras.

8.1.3 The monad–theory correspondence
We focused in Chapter 7 only on monad–theory correspondences for enriched categories (consequently also
recovering those for internal categories). While this setting is particularly useful, it is also, to some extent, the
least interesting: though our correspondence is more general than appears previously in the literature, and to
that extent may be used to obtain new monad–theory correspondences in specific cases of interest, in practice
prior frameworks usually suffice. The power of our approach is that we may obtain correspondences in other
2-categories for which there do not currently exist general monad–theory correspondences, or for varieties
of algebraic theories and monads that do not currently fit within a general framework. We have several open
questions in this vein.

1. Can the correspondence between commutative algebraic theories [Lin66a, §6] and commutative mon-
ads [Koc70] be recovered as amonad–theory correspondence in a suitable 2-category? Similar questions
may be posed for other varieties of algebraic theories (e.g. affine algebraic theories [Law68] and affine
monads [Lin79]).

2. Can Diers’s correspondence between multialgebraic theories and multimonads [Die80a; Die80b; Die83]
be recovered using our 2-categorical framework?

3. Do essentially algebraic theories, viewed as partial algebraic theories in the sense of Di Liberti, Loregian,
Nester and Sobociński [Di +21], form a monad–theory correspondence in a 2-category of restriction

1Power’s correspondence for enrichment in a nonsymmetric monoidal category [Pow99] is close, but takes place in the setting of
local presentability, rather than local strong presentability.

2There is evidence to suggest that the most natural definition of morphism of relative monads in a 2-category, for instance as in
[Lob20, Definition 3.1], is too strong to recover certain phenomena of interest, and that it is worth instead studying (suitably defined) left-
and right-morphisms of relative monads, in analogy to left- and right-morphisms of relative adjunctions.
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categories [CL02] (perhaps using enrichment in a double category [CG14])?
More philosophically, with regards to (1), our perspective of theories as relative monads clarifies the role of
theories in the study of monads, suggesting that, given some property ϕ of a relative monad in a proarrow
equipment (−)∗ : K → N , it is fruitful to find some property ϕ′ of its Kleisli embedding such that a relative
monad T has propertyϕ if and only if kT : A→ Kl(T ) has propertyϕ′. It is likely in these situations that there
is a proarrow equipment in which the relative monads are precisely the relative monads in (−)∗ satisfying ϕ,
and that the Kleisli objects are those in (−)∗ satisfying ϕ′; and it may be possible in these cases to establish
the correspondence abstractly using the general 2-categorical techniques we have outlined.

The monad–theory correspondence is part of a much larger story. Aspects absent from our treatment here
involve the structure–semantics adjunction, relative monadicity, the construction of free relative monads,
relative adjoint functor theorems, commutativity, duality, among others. In this thesis, we have given a small
taste of the insight provided by the perspective of theories as relative monads; in future work, we will show
that there remains much more to say.
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